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THE SYSTEMS ANALYSIS LANGUAGE TRANSLATOR (SALT): 
USER'S GUIDE 

by 

Howard K. Geyer and Gregory F. Berry 

ABSTRACT 

The Systems Analysis Language Translator (SALT), a systems-
analysis and process-simulation computer code for s teady-state and 
dynamic systems, can also be used for optimization and sensitivity 
studies. The SALT code uses sophisticated numerical techniques, 
including a hybrid steepest-descent/quasi-Newtonian multidimensional 
nonlinear equation solver, sequential quadratic programming methods 
as optimizers, and multistep integration methods for both stiff and 
nonstiff systems of equations. Based on a preprocessor concept, the 
code uses a language translator to allow the user great flexibility in 
specifying a systems-analysis problem using a mostly free format and 
user-defined labels. The code uses precompiled component models, 
several flow types, and numerous thermodynamic and transport 
property routines, including a gas chemical-equilibrium code. The 
SALT code has been used to study open-cycle and liquid-metal 
magnetohydrodynamic systems, fuel cells, ocean thermal energy 
conversion, municipal-solid-waste processing, fusion, breeder 
reactors, and geothermal and solar-energy systems. 

1 INTRODUCTION 

1.1 OVERVIEW 

The Systems Analysis Language Translator (SALT) is a s teady-state (see Refs. 
1-7) and dynamic (see Ref. 8) system code that can analyze lumped-component systems 
of arbitrary configuration. As a s teady-state code, SALT excells a t performing 
nonlinearly constrained optimization studies and parametric studies and can establish all 
kinds of user-imposed system constraints. The code uses s ta te-of- the-ar t problem-
solving techniques, including hybrid steepest-descent/quasi-Newtonian equation solvers 
and sequential quadratic programming methods as optimizers. As a dynamic code, 
SALT uses multistep methods for both stiff and nonstiff systems and determines steady-
s ta te initial values using hybrid techniques. 

The SALT code is a preprocessor that accepts input from two primary files, 
STRUCT and INTF, and generates a PL/I code representing a given system problem. The 
STRUCT file contains user-supplied data representing the system configuration for the 
specific problem to be analyzed, together with instructions defining system constraints, 
objective functions, parameter sweeps, e t c . The INTF file contains information needed 



at interfaces with the system components. This file usually need not concern the user 
unless, for example, new models are being added to the component library. 

Key words and user-supplied data are employed to represent the system and to 
accomplish the various analytic tasks. The 13 primary key words used at present are 
PROCESS, SYSBEG, SYSEND, VARY, CONSTRAIN, SWEEP, MINIMIZE, PLI, 
INTEGRATE, STEADY, SWITCH, CONTROL, and DATA. Before considering the SALT 
language in detail, we present several simple examples. 

1.2 EXAMPLES 

The following examples treat conventional fossil/steam power plants, but such 
power systems are by no means the only area of application for SALT. These examples 
also do not necessarily conform to the requirements of the models presently available for 
use with SALT; rather, they are intended to give the user some preliminary idea of the 
language's appearance. 

Flow Model for a Simple System 

As an initial example, consider a simple steam plant that consists of a steam 
flow passing through a heater (HT), a steam turbine (ST), a steam condenser (SC), and a 
water pump (PUMP). Figure 1 depicts the system configuration; in this figure, STMl 
indicates the steam flow, HT_1 the heater, S T l the steam turbine, SC_1 the steam 
condenser, and PUMPl the water pump. This configuration is represented within the 
SALT language by the use of the following PROCESS statement: 

PROCESS STM_l-> HT_1 ST_1 SC_1 PUMP_1 

The steam flow is represented by the symbol with the attached arrow, "->"; in general, 
flow is always represented within the SALT language by a symbol with such an arrow. 
Each symtKjl representing a model or a flow consists of a string of characters for the 
model or flow type, followed by an underscore, "_," and the character " 1 . " This "1" 
character ~ actually a user-defined label that could have been any string of characters 
~ is used to distinguish between models or flows of the same type, where more than one 
is used. Thus, if two steam turbines had been used (e.g., for high-pressure and low-
pressure stages), they might have been denoted as STl and ST 2 or as ST HP and ST LP. 

In Fig. 1, the steam flow is shown passing through each of the models; this case is 
represented within the SALT language by writing the steam-flow symbol before these 

FIGURE 1 Simple Steam Path 



models, with the arrow placed after the flow symbol and pointing to the models through 
which it passes. 

Use of the Flow Splitter Model 

Figure 2 shows a system configuration in which part of the steam is split off by a 
splitter model ( S P l ) . bypasses the heater model and steam-turbine model, and is then 
remixed with the STM 1 flow in a mixer model (MX 1). The configuration shown in Fig. 2 
is represented within the SALT language as follows: 

PROCESS STM_1-
HT_1 
ST_1 
MX_1 <-STM_2 
SC 1 

SP 1 ->STM 2 

The correspondence between the SALT input and the figure remains fairly straight
forward. In addition to the pass-tlu'ough flow used in the first example, this system uses 
two other flow classes. The first of these is an output flow that originates from a model, 
such as the STM_2 flow from the S P l model. These output flows are, in general, 
represented by flow symbols written after the models from which they originate, with 
the arrow pointing to the flow. The second flow class is an input flow, such as the STM 2 
flow going into the M X l model. This class of flows is again specified by writing the 
symbol after the model to which it pertains, but with the arrow pointing to the model. 
Whether a flow is classed as a pass-through, input, or output flow is determined by the 
relationship of the flow to the model and is not just a property of the flow. Thus, STM 2 
above is both an input flow to the MX 1 and an output flow from the SP 1. Input and 
output flows pertain only to the single model preceding them. In the present example, 
STM_2 does not interact with the H T l or ST 1 models, but STM 1 — represented as a 
pass-through flow — still flows through all of the models. 

The actual layout of the SALT input is a matter of individual preference; only 
the order of the symbols is important. Thus, the SALT input s tatement corresponding to 
the system in Fig. 2 could be specified as 

PROCESS STM l-> SP_1 
HT_1 
SC 1 

->STM_2 
ST 1 ^a 1 <-STM 2 

STM_1 
HT_1 

S rM_: 

ST_1 

> 

. , 

SC_1 

FIGURE 2 Simple Steam Path with Bypass Leg 



or even as 

PROCESS STM_l-> SP_1 ->STM_2 HXl ST_1 MX_1 <-STM_2 SCI 

The user will find some forms of input statement easier to follow than others. 

Use of Parallel System Components 

Figure 3 shows a system that uses an additional steam turbine in parallel. This 
configuration is represented within the SALT language by the following: 

PROCESS STM_l-> SP_1 ->SMT_2 
HT_1 ST_1 

STM_2-> ST_2 
STM_l-> MX_1 <-STM_2 

SC_1 

In this example, after the STM 1 flow has been processed through the ST 1 model, STM 2 
must be processed through the ST_2 model before both flows can be mixed in the MX 1 
model. Thus, the pass-through flow STMl is interrupted by simply writing STM 2 as a 
new pass-through flow through the ST 2 model. The STM 1 flow is then reestablished as a 
pass-through flow to complete the system configuration. In general, any pass-through 
flow may be terminated simply by writing another flow as a pass-ttu-ough flow; the first 
pass-through flow is temporarily suspended (but not lost or forgotten). 

This example also demonstrates that the order of the models is important in 
representing the system configuration. Also, all the flows must have been processed 
through the models they pass through before the next model that uses these flows can be 
specified. Here, it would be incorrect to specify the MX 1 model before the ST_2 model. 

Use of the Flow Initiator Model 

In the examples presented so far, the incoming STMl flow simply passed through 
the first model within the system configuration. Actually. SALT requires that all flows 
originate from models (such as the SP model used above). In order to start a flow, a 

STM_1 
HT_1 

STM_2 

— » ST_1 

ST_2 

MX_i 

-i 

SC_1 

FIGURE 3 Parallel-Path Steam System 



special initiator model, denoted IN, is used. This model has only one flow, which 
technically is an output flow; however, within the SALT input s tatements it is specified 
as a pass-tiirough flow. The correct SALT input s ta tement for the first example 
discussed would actually appear as follows: 

PROCESS STM_l-> IN_1 HT_1 ST_1 SC_1 PUMP_1 

The other examples would also use this initiator model. The initiator model assigns 
initial values to the steam-flow parameters . 

Use of Multiple-Entry Models 

Figure 4 shows a system configuration that includes a multiple-entry model. This 
multiple-entry model is a heat exchanger (HX); the hot stream is processed in one entry 
to the model and the cold stream in another. The two entries are specified at different 
points within the SALT input. Such entries are specified by adding a colon and an entry 
designator after the model name. For an HX model, these entry designators are "H" for 
the hot side and "C" for the cold side. Thus, the system depicted in Fig. 4 is represented 
in the SALT language as follows: 

PROCESS GAS_l-> 
STM l-> 

IN_G 
IN S 

HX_l:H 
HX 1:C ST 1 SC 1 PUMP 1 IN S:CYCL 

The IN model also is a multiple-entry model. The additional entry to this model, denoted 
"CYCL," is used to generate the constraints necessary to close the steam loop at the 
"back door" of the I N S model. The CYCL entry does not by itself close the steam loop; 
that is done by VARY and CONSTRAIN statements (described below). 

Actually, most of the models used by SALT are multiple-entry models. Most 
models have an "OUT" entry for printing out the resylts of the calculations. This entry 
does not require any flows, and a special NULL flow has been provided to terminate any 

GAS_1 

STM_1 

IN_G 

IN_S 

HX_1 

ST_1 SC_1 

FIGURE 4 System with a Miiltiple-Entry Model 



existing pass-through flow without replacing it with another pass-through flow. For 
example, to call the output entry to the S T l model (where "call" means "specify in a 
PROCESS statement"), one would write the following statement: 

PROCESS NULL-> ST_1:0UT 

(The NULL flow does not require a label.) Of course, all of the model outputs may be 
specified, as in this version; 

PROCESS NULL-> IN_G:OUT IN_S:0UT HX_1:0UT ST_1:0UT 
SC_1:0UT PUMP_1:0UT 

This PROCESS statement (more than one PROCESS statement may be used in the SALT 
input) should only follow those PROCESS statements that perform the calculations and 
process the flows. Otherwise, there would be no results to be printed when the model 
output entries were called. Because calling the output entries is the only way to obtain 
model output, the SALT code includes an abbreviation for this task: 

PROCESS NULL-> *_*:OUT 

Here, "* *" refers to all of the models called within the system configuration. 

Assignment of Values to Model Parameters 

So far, we have concentrated on representing simple system configurations by 
means of PROCESS statements. Actually, even the largest systems can be represented 
in terms of the same simple methods used with these simple systems. The PROCESS 
statement itself is the minimal input needed to run SALT. However, the configuration of 
a system does not by itself represent the system. Each model within the system usually 
has numerous parameters to which values must be assigned before the system simulation 
can be performed. (These parameters have default values, but these values may not be 
the ones required for a specific system.) An additional SALT statement, the DATA 
statement, is used to assign the proper values to these parameters. 

Before giving an example of the DATA statement, we must explain how to refer
ence the model parameters. As shown by the PROCESS statement, each model used in a 
system has a name consisting of a model type (e.g., HX for heat exchanger) followed by a 
user-defined label (e.g., HX 1). The parameters (both input and output) for a model are 
referred to by writing this model name, followed by a period, and then the parameter 
name. For example, the steam-turbine model (ST) has a parameter (denoted as EXIT_ 
PRES) representing the exit pressure of the flow from the turbine. Within the SALT 
input, this parameter would be referenced for the ST LP model as ST LP.EXIT PRES. All 
the parameters of all the models may be referenced in a similar way. The parameter 
names themselves may also have various levels, separated by periods. Thus, the power 
produced by the steam turbine is denoted as POWER.PRODUCED and would be referred 
to as ST LP.POWER.PRODUCED for the ST LP model. 



The DATA statement might then take the following form: 

DATA ST_LP.EXIT_PRES=0.1; 
ST_LP.EFFICIENCY=0.85; 
PUMP_1.EXIT_PRES=120; 
PUMP_1.EFFICIENCY=0.80; 

Here, the exit pressures and efficiencies of the ST LP and the PUMP 1 models have been 
assigned values. Only one DATA sta tement is allowed, and it must be the last s ta tement 
within the SALT input; however, the s ta tement may be as long as necessary in order to 
define values for all of the model parameters . Certain abbreviations are allowed. For 
example, the model name need not be rewritten before each parameter name; instead, 
one leaves a blank following the model name: 

DATA ST_LP .EXIT_PRES=0.1; .EFFICIENCY=0.85; 
PUMP_1 .EXIT_PRES=120; .EFFICIENCY=0.80; 

At this point, let us show the complete set of SALT inputs for our first example (see 
Fig. 1). An initiator model, I N I , is needed in order to s tar t the steam flow with some 
values. A typical set of SALT inputs might then take the following form: 

PROCESS STM_l-> IN_1 HT_1 ST_1 SC_1 PUMP_1 
NULL-> *_*:OUT 

DATA IN_1 . T = 6 0 0 ; . P = 1 2 0 ; .M=100; . I D = ' H 2 0 ' ; 
HT_1 .HEAT=1E7; 
ST_1 .EXIT_PRES=1.0 ; .EFFICIENCY=0.82; 
PUMP_1 .EXIT_PRES=120; .EFFICIENCY=0.80; 

Here, the steam flow is s tarted at a temperature, T, equad to 600 K; a pressure, P, of 
120 atm; and a mass flow ra te . M, of 100 kg/s. A total of 10 MW of heat is added to this 
flow by the H T l model; the steam is then expanded,to 1 atm at an isentropic efficiency 
of 82%, condensed at 1 atm, and pumped back to 120 atm at an isentropic efficiency of 
80% in the P U M P l model. The model output entries are then called to print out the 
results of the simulation. This PROCESS sta tement and DATA sta tement are all that are 
needed for this problem. 

Calculation of System Parameters 

One of the functions of systems analysis is to calculate certain system 
parameters , as opposed to model parameters . Such system parameters are often 
functionally dependent on the collective values of the model parameters . Thus, for 
example, the total power produced by a system is the sum of the powers produced by the 
individual component models. Such system parameters are obtained by calling system 
models. These systems models usually do not process any flows, but they can process 
individual model parameters in each of the models. The system models themselves are 
specified within the SALT input (like any other model) by the use of the PROCESS 
s ta tement . They may also have multiple entry points; in particular, there may be 
multiple output entries for the printing not only of the system parameters , but also 
(possibly) of tabular summaries of the individual model parameters used in calculating 
such system parameters. 
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For example, the SYST system model is used to calculate power summaries and 
to print such summaries when its OUT entry is specified. This model will also print out 
tables of the exit flow conditions from each model, by flow name. A concise overview of 
the system simulation can be obtained by calling only this one output entry, rather than 
calling all of the individual model outputs. In the complete SALT input for the first 
example, the SYST and SYST:OUT entries could be called simply by replacing the one 
line 

NULL-> *_*:OUT 

with the line 

NULL-> SYST_1 *_*:OUT 

The system model, like all models, requires the user-defined label; the "*_•" notation 
includes any system models. Of course, any input parameters that the SYSTl model 
requires must also be added to the DATA statement. 

Using the PROCESS and DATA statements, it is possible to model many systems; 
however, as indicated above, closed flow loops actually require the use of additional 
SALT language statements. The real power of the SALT code lies in its use of these 
additional statements to establish system constraints, perform optimizations or 
parametric studies, etc. 

Use of System Constraints 

Consider the first system (shown in Fig. 1) again. Suppose we wish to make the 
total power produced by the ST 1 model equal to ten times the power consumed by the 
PUMPl model and that the exit pressure of the ST 1 model is to be varied to establish 
this constraint. This type of problem is symbolized using the VARY and CONSTRAIN 
statements, as follows: 

VARY ST_1.EXIT_PRES = 1.0 0.01 5.0 
CONSTRAIN ST_1.POWER.PRODUCED = 10*PUMP_1.POWER.CONSUMED 

The three numbers within the VARY statement represent an initial value for the steam-
turbine exit pressure and lower and upper bounds between which the exit pressure may be 
varied. The actual values that the exit pressure takes in order to establish the constraint 
are dictated by an equation solver. This equation solver uses an iterative technique, 
starting with the initial value furnished in the VARY statement. 

In many cases, constraints can be thought of as constraining some subsystem, 
rather than the entire system. These subsystems are delimited, within the SALT inputs, 
by means of SYSBEG and SYSEND statements. These statements, consisting of the 
SYSBEG and SYSEND key words followed by a delimiting user-defined label, are inter
spersed among the other SALT language statements to define the beginning and ending 
points of a subsystem. 



VARY and CONSTRAIN statements, as well as other SALT language statements 
that define iterative tasks, must always be included between the SYSBEG and SYSEND 
statements. Thus, the SALT input for our simple system (Fig. 1) ~ with the constraint 
included — might appear as follows: 

SYSBEG A 
PROCESS STM_l-> IN_1 HT_1 ST_1 SC_1 PUMP_1 
VARY ST_1.EXIT_PRES = 1.0 0.01 5.0 
CONSTRAIN ST_1.POWER.PRODUCED=10*PUMP_1.POWER.CONSUMED 

SYSEND A 
PROCESS NULL-> SYST_1 *_*:OUT 
DATA 

The SYSBEG-SYSEND delimiter label used is "A," and the subsystem actually 
taken is the entire system configuration. In this case, varying the steam-turbine exit 
pressure does not affect the models upstream, so the same results would be obtained by 
defining the subsystem only around the ST 1, SC 1, and PUMP 1 models; then the IN 1 and 
HT 1 models would be called only once before the iterations within the subsystem were 
performed. The overhead of calling the I N I and H T l models many times would be 
avoided, and a faster and less expensive computer run would result. With the subsystem 
only around the ST 1, SC 1, and PUMP 1 models, the SALT inputs look like this: 

PROCESS STM_l-> IN_1 HT_1 
SYSBEG A 
PROCESS STM_l-> ST_1 SC_1 PUMP_1 
VARY ST_1.EXIT_PRES = 1.0 0.01 5.0 
CONSTRAIN ST_1. POWER. PRODUCED=10*PUMP_1. POWER. CONSUMED 

SYSEND A 
PROCESS NULL-> SYST_1 *_*:OUT 
DATA . 

Any number of VARY and CONSTRAIN statements can be included within a 
subsystem. For example, in addition to the constraint specified above, suppose it were 
required to constrain the outlet temperature of the heater, denoted as HT l.TEMP, to 
800 K (for a fixed heat load) by varying the steam-flow rate between 100 and 200 kg/s. 
This could be stated as follows: 

SYSBEG A 
VARY IN_1.M = 150 100 200 
CONSTRAIN HT_1.TEMP = 800 
VARY ST_1.EXIT_PRES = 1.0 0.01 5.0 
CONSTRAIN STM_1.POWER.PRODUCED=10*PUMP_1.POWER.CONSUMED 
PROCESS STM_l-> IN_1 HT_1 ST_1 SC_1 PUMP_1 

SYSEND A 
PROCESS NULL-> SYST_1 *_*:OUT 
DATA 



10 

The VARY and CONSTRAIN statements need not always be written at the end of the 
subsystem; they can be written between any s ta tements within the subsystem, and their 
order is immaterial. 

For this particular problem, the constraints and the parameters varied to 
establish them can actually be split into two subsystems, as follows: 

SYSBEG A 
VARY IN_1.M = 150 100 200 
CONSTRAIN HT_1.TEMP = 800 
PROCESS STM_l-> IN_1 HT_1 

SYSEND A 
SYSBEG B 

PROCESS STM_l-> ST_1 SC_1 PUMP_1 
VARY ST_1.EXIT_PRES = 1.0 0.01 5.0 
CONSTRAIN ST_1.POWER.PRODUCED = 10*PUMP_1 .POWER.CONSUMED 

SYSEND B 
PROCESS NULL-> SYST_1 *_*:OUT 
DATA . 

This form is slightly more efficient computationally then the previous form, but both 
approaches should yield the same results within numerical accuracy. The single-
subsystem form attacks the problem as two equations in two unknowns; the two-
subsystem form, as two sets of one equation in one unknown. It is also possible to have 
subsystems nested within other subsystems. 

Optimization of System Parameters 

The constraint specified above concerning the steam-turbine power produced is 
somewhat contrived. A more realistic goal might be to maximize the turbine power 
produced.* This type of problem, an optimization, is treated in the SALT language by 
using the MINIMIZE statement. (By minimizing the negative of an expression, one 
obtains the maximum of that expression.) Thus, maximizing the steam power produced is 
represented as follows: 

MINIMIZE -ST_1.POWER.PRODUCED 

This statement would replace the constraint used previously, as follows: 

PROCESS STM_l-> IN_1 HT_1 
SYSBEG A 
VARY ST_1.EXIT_PRES = 1.0 0.01 5.0 
MINIMIZE -ST_1.POWER.PRODUCED 
PROCESS STM l-> ST 1 

*Net power produced by the system would be an even better objective function. The 
example is only used to illustrate the SALT language. 
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SYSEND A 
PROCESS STM_l-> SC_1 PUMP_1 

NULL-> SYST_1 *_*:OUT 
DATA 

Both the parameter being varied and the objective function of the MINIMIZE statement 
pertain only to the S T l model. Therefore, this model is the only one included in the 
subsystem. 

Essentially, the system in question has one degree of freedom; one variable is 
varied in order to maximize the steam-turbine power. For an optimization problem, 
additional variables may also be varied, leading to systems having higher degrees of 
freedom. Suppose that in addition to the turbine exit pressure, the heat transferred in 
the H T l model and the inlet steam-flow ra te were also varied, as represented by the 
following s tatements: 

SYSBEG A 
PROCESS STM_l-> IN_1 HT_1 ST_1 
VARY IN_1.M = 150 100 200 
VARY HT_1.HEAT = 1E6 1E5 1E7 
VARY ST_1.EXIT_PRES = 1 0.01 5.0 
MINIMIZE -ST_1.POWER.PRODUCED 

SYSEND A 
PROCESS STM_l-> SC_1 PUMP_1 

NULL-> SYST_1 *_*:OUT 
DATA . 

If additional parameters pertaining to additional models are varied, these models also 
must be included in the subsystem. , 

It is possible to include the CONSTRAIN statement within optimization tasks. 
Thus, to constrain the H T l model exit temperature to a value of 800 K, one simply adds 
the the s ta tement : 

CONSTRAIN HTl.TEMP = 800 

to the subsystem. By adding such an equality constraint, the degrees of freedom are 
reduced from three to two. If two more equality constraints were added, then the 
problem would have zero degrees of freedom; the parameters being varied would be just 
sufficient to satisfy the constraints, with none remaining for the minimization. It is 
possible to include more constraints than parameters being varied; however, such 
constraints must be inequalities. For example, if it were enough to keep the exit heater 
temperature greater than 800 K in the foregoing example, then the constraint would be 
written as follows: 

CONSTRAIN HT l.TEMP > 800 
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This constraint would not necessarily reduce the degrees of freedom from three to two. 

As with subsystem tasks handled by pure-equality constraints (i.e., nonoptimiza-
tion tasks), more than one optimization subsystem task may be used, and the tasks may 
also be nested. Optimization tasks may also be used along with nonoptimization tasks. 
Numerous ways may exist in which to set up the same basic problem using the SALT 
language. Of course, any problems set up should be well posed. 

Use of the Parameter Sweep 

Instead of being interested in the single value of some parameter that solves an 
optimization problem or establishes a constraint, one might wish to consider the results 
of the system simulation for an entire range of parameter values (sensitivity analysis). 
Such parameter-sweep problems are defined using the SWEEP s ta tement . For example, 
to see the effects of varying the ST l .EXITPRES from 1 to 5 atm in increments of 0.5 
atm, one would write: 

SWEEP ST_1.EXIT_PRES = 1 TO 5 BY 0.5 

Sweeping tasks, being defined within a subsystem, require the SYSBEG and SYSEND 
subsystem delimiters. Taking our simple example of Fig. 1 and including this sweeping 
task, we have the following for the SALT inputs: 

SYSBEG A 
SWEEP ST_1.EXIT_PRES = I TO 5 BY 0.5 
PROCESS STM_l-> IN_1 HT_1 ST_1 SC_1 PUMP_1 

NULL-> SYST_1 *_*:OUT 
SYSEND A 
DATA . 

Unlike the other tasks, this sweeping task also includes the calls to the model output 
entries, as well as the SYSTl model, within the task. If the entries were called within 
the task rather than after the SYSEND statement, then only the results for the last 
turbine exit pressure would be printed, defeating the purpose of the sweep. Sweeping 
tasks should not include VARY, CONSTRAIN, or MINIMIZE s ta tements ; however, 
additional subsystems that do include these s tatements may be nested within the 
sweeping tasks. 

1.3 JOB-CONTROL LANGUAGE 

The sequence of steps required in running the SALT system code after the 
STRUCT file has been prepared is included in a job-control-language (JCL) procedure 
used on the IBM computer system at Argonne National Laboratory (ANL). (The SALT 
code itself exists on computer tape at the National Energy Software Center, located a t 
ANL.) This JCL procedure is reproduced in App. A. 
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2 SALT LANGUAGE 

This chapter describes the elements of the SALT language. The SALT code 
currently uses 13 different primary key words to represent the system and the various 
tasks that are to be performed (see App. B). Each of these key words and the statements 
associated with them are discussed in the following sections. 

2.1 PROCESS STATEMENT 

The key word PROCESS begins a PROCESS statement, which defines the compo
nents of the system and indicates how such components are connected by flows. The 
system components usually represent such devices as pumps, compressors, heat 
exchangers, turbines, etc., but they may also represent purely computational procedures 
to be performed within the system analysis. Similarly, the flows of the system usually 
represent the flows of gases, steam, air, coal slurries, etc.. but they also may represent 
simply the flow of information from component to component. 

Each component within the component 
or one or more flows of a specific type. These 
input, or output flows. A pass-through flow 
is one that both enters and leaves a given 
component. A flow that enters but does not 
leave a component is an input flow, and a 
flow that leaves but does not enter a 
component is an output flow. The 
specification of flows as pass-through, 
input, and output flows is dictated by the 
developer of the model rather than by the 
user of the system code. Thus, for 
example, a splitter model (SP) might have 
been written to handle three flows — one 
input flow, Fl, and two output flows, F2 
and F3 (see Fig. 5a). Alternatively, the SP 
model might have been written to process 
only two flows — one pass-through flow, Fl, 
and one output flow, F2 (see Fig. 5b). 

In using the PROCESS statement to 
describe a system configuration, one 
specifies the pass-through flows first, 
followed by the model name, and then the 
input and output flows. If a model has no 
pass-through flow, then at least one input 
flow should be specified before the model 
name. 

library will process either no flows at all 
flows can be categorized as pass-through. 

Fl 
SP 

F2 

F3 

(a) One Input Flow and Two 
Output Flows 

Fl 
SP 

Fl 

F2 

(b) One Pass-Through Flow 
and'One Output Flow 

FIGURE 5 Alternative Flow 
Arrangements for the 
Splitter Model 
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Consider the system shown in Fig. 
6. It consists of only one component. Ml, 
which processes one pass-through flow, F l ; 
one input flow, F2; and one output flow, 
F3. This is represented in the SALT code 
by the following statement: 

PROCESS Fl-> Ml <-F2 ->F3 

Fl 

F2 
Ml 

Fl 

F3 

FIGURE 6 Model with 
One Pass-Through Flow, 
One Input Flow, and 
One Output Flow 

The symbols with the arrows represent the 
flows; those without arrows (except the 
word PROCESS) represent the models. 
Pass-through flows are written before the 
model, input and output flows after the 
model. Pass-through and input flows have 
the arrow pointing to the model, while 
output flows have the arrow pointing to the 
flow. The only exception to this rule occurs 
when a model has no pass-through flow; in 
such a case, the first input or output flow 
to the component should be written as if it 
were a pass-through flow. For example, 
suppose a flow, F l , originates from an 
initiator model, IN (see Fig. 7). The configuration shown in Fig. 7 would be correctly 
symbolized as 

FIGURE 7 Flow-
Initiator Model 

PROCESS Fl-> IN 

but not as 

PROCESS IN ->F1 

For systems with many components, the PROCESS statements for each individual 
component are simply strung together without specifying the keyword PROCESS again. 
Thus, the system shown in Fig. 8 is symbolized as follows: 

PROCESS Fl-> Ml ->F2 
Fl-> M2 
Fl-> M3 ->F3 

The order in which the models and their flows are written down depends on which flows 
are known. A specific model can be written down only when all the other models 
generating all the input or pass-through flows for that model have been previously 
specified. 

The SALT code will "remember" previous pass-through flows, so such flows need 
not be specified each time a component is specified; this feature serves to simplify the 
PROCESS statement . Thus, if a model is written down without a pass-through flow, it is 
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Fl 
M1 

Fl 

F2 

1 

M2 
Fl 

M3 
Fl 

F3 
»• 

FIGURE 8 Simple Three-Model System 

assumed that the last-occurring pass-through flow also goes through this model. The 
example shown in Fig. 8 can be written as 

PROCESS Fl-> Ml ->F2 
M2 
M3 ->F3 

or (because there is no need to skip to the next line for each model) as . 

PROCESS Fl-> Ml ->F2 M2 M3 ->F3 

The user may arrange the layout for maximum clarity. Caution should be used in 
specifying many components and flows on one line when output flows are generated, 
because these output flows do not pass through the other components unless they are 
written explicitly as pass-through or input flows. Thus, in the foregoing example, flow 
F2 does not go through models M2 or M3. Models without pass-through flows, such as the 
flow-initiator model, have at least one flow written fts a pass-through flow, because 
otherwise the previously occurring pass-through flows would be passed to such a model. 

The processing of a flow may be interrupted for the processing of other flows and 
resumed later . Consider the example illustrated in Fig. 9. This configuration would be 
represented as follows: 

PROCESS Fl-> Ml 
F2-> M4 
Fl-> M3 

M2 ->F2 

M5 <-F2 

The processing of F l is interrupted after M2, in order that F2 can be obtained at the 
exit of component M4 before M5 is called. 

In writing down the model name and flows, the order of the flows with respect to 
the model is important. If a model has two pass-through flows, the user must be aware 
of which flow is to be specified first. This requirement also extends to the input and 
output flows. For example, suppose a model (Ml) requires two pass-through flows and 
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Fl 
Ml 

Fl 
M2 

Fl 

F2 

M3 

M4 

Fl 
M5 

di 

-2 

Fl 

FIGURE 9 Simple Five-Model System 

one output flow (see Fig. 10). Then Fl and 
F2 must be in the correct order when the 
PROCESS statement is written. The 
statement 

PROCESS Fl-> F2-> Ml ->F3 

Fl 

F2 
Ml 

Fl 

F2 

F3 

PROCESS F2-> Fl-> Ml ->F3 

is not the same as 
FIGURE 10 Model with 
Multiple Pass-Through 
Flows 

(The first of these two statements is the 
correct one.) The ordering of the flows 
with respect to the model would be decided upon by the developer of the model. All of 
the flows required by any model must be specified within the SALT input. For example, 
suppose a steam-turbine model is developed that includes a feedwater-extraction flow as 
an additional output; that flow must be specified within the SALT input, even if the flow 
is assigned a zero mass-flow rate (i.e., the flow is not used within the system). 

The SALT code also makes it possible for a model to process multiple flows; 
either one flow or several flows can be processed at a time. For example, the heat-
exchanger model was written to process the hot flow in one component call and the cold 
flow in another call. In order for SALT to identify which flow such a component is 
processing, an optional entry label is added to the model name by appending a colon, 
followed by the entry name. In the case of the HX model, these entry names consist of 
"H" for the hot flow and "C" for the cold flow. In the system diagram below (Fig. 11), a 
flow (Fl) originates from the IN model, passes through the hot side of a heat exchanger 
(HX), is further processed by another model (Ml), and finally is fed back through the cold 
side of the heat exchanger. The SALT representation of this diagram would be as 
follows: 

PROCESS Fl-> IN HX:H Ml HX;C 

If no entry label is used, the SALT code assumes the entry label "C." In some cases, 
models have been written such that the processing of the first flow must be done before 
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IN 
Fl 

Fl 

HX 
Fl 

M1 
Fl 

FIGURE 11 Example Using a Multiple-Entry Model 

that of the other flows of the model. An example of this is the MHD channel model, MG, 
where the first flow is the hot-gas flow and the second flow is the cooling-water flow. 
The MG model calculates the heat removed from the hot-gas flow when processing the 
first flow. The heat removed is retained within the model and is used when the model 
processes the cooling-water flow. 

In the foregoing examples, the ficticious flows and models have been named Fl , 
F2, Ml, M2, e tc . In an actual system problem, the names should correspond to the names 
of the flows and models available in the component library and defined within the INTF 
file. Each model or flow used in the PROCESS sta tement takes the form of a model type 
(e.g., HX for heat exchanger) or a flow type (e.g., GAS for gas flow), followed by an 
underscore and a user-defined label. This label, which can be up to ten characters in 
length, is used to delineate multiple components of the same type. Thus, if a system 
configuration requires the use of two heat-exchanger models, these models could be 
denoted as H X l and HX_2 or H X S H and H X R H (for a superheater and a reheater) . 
These optional labels are at tached directly to the model-type name without any 
separating blanks. For the sake of simplicity, we will usually set this label to " 1 " in our 
examples. * 

The general form of the process s ta tement can now be summarized as follows: 

PROCESS spec spec spec . . . 

where spec takes the form 

pflow- model ;entry <-i£low ->oflow 

Here, the use of ellipsis indicates that the preceding symbol may appear more than 
once. "Pflow," "iflow," and "oflow" stand for the pass-through, input, and output flows, 
respectively, each of which takes the form of a flow type concatenated with an 
underscore and a user-defined label of ten characters or fewer. "Model," which 
represents the model name, takes the form of a model type concatenated with an 
underscore and a user-defined label, also of ten characters or fewer. "Entry" represents 
the optimal entry label. Any or all of the flows may be absent. If no pflows appear, then 
the last-appearing pflows are assumed. The special pflow denoted "NULL->" and used 
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without a label can be used to terminate the pflows without generating a new one. The 
lodel entry may also be absent, in which case the code assumes the entry "C." m 

2.2 SYSBEG AND SYSEND STATEMENTS 

SALT. like most system codes, uses an iterative scheme in order to meet various 
types of system constraints. The iterations, instead of being performed automatically, 
are set up by the user. These iterations may be performed over all or part of the system 
configuration. The SYSBEG and SYSEND statements delimit the beginning and end of an 
iterative loop. Each of these key words is followed by the same user-defined label, which 
must be different for each iterative loop defined; The form of each of these statements 
is as follows: 

SYSBEG label 
SYSEND label 

These key words may also define nested loops. The only requirement is that each loop be 
either fully contained in or fully excluded from other loops; partial overlapping is not 
permitted. 

The actual function performed within the SYSBEG-SYSEND loop is dictated by 
VARY. SWEEP, or INTEGRATE statements. At least one such s ta tement must be 
specified in each SYSBEG-SYSEND loop, with only one of these types specified in any 
one loop. 

2.3 VARY STATEMENT 

The VARY statement defines the variables to be varied in order to meet speci
fied constraints or perform an optimization. The form of the VARY statement is as 
follows: 

VARY variable_name = s t a r t lower upper 
; variable_name = s t a r t lower upper 

Here, "variable name" is the name of the variable to be varied, "start" is the starting 
value, and "lower" and "upper" specify lower and upper bounds on the variable. The 
starting value should be specified between these lower and upper bounds. If "start" is 
given the value "*," the variable's current value will be used as the startling value. Any 
number of variables can be specified, but each must be separated from the others by a 
semicolon; this semicolon is a separator, not a terminator, so the last upper bound should 
not be followed by a semicolon. 

In the VARY statement, the starting value and the lower and upper values may 
be either variables or algebraic expressions. In any case, the character string 



19 

representing these variables or expressions should not contain any blanks and should be 
fewer than 31 characters in length. The values of "start," "lower," and "upper" are 
evaluated before entering the loop (as determined by the SYSBEG statement) and are not 
changed during the loop iterations. 

2.4 CONSTRAIN STATEMENT 

The statement used to specify constraints takes the form 

CONSTRAIN exp op exp 
; exp op exp 

where "exp" is an algebraic expression of variables known at the end of the loop in which 
the constraint statement occurs and "op" is a relational operator ("=," "<," or ">"). 

The use of inequalities in a CONSTRAIN statement is permitted only when the 
MINIMIZE statement is used to define an optimization problem. Algebraic expressions 
used in CONSTRAIN statements should be fewer than 72 characters in length. If longer 
expressions are needed, they can be shortened to single variables by means of the PLI 
statement (see Sec. 2.12), and the single variables can then be used in the CONSTRAIN 
statement. As was the case with the VARY statement, the semicolon is used to separate 
constraints but not to terminate them. 

When no MINIMIZE statement has been specified, the number of equadity 
constraints must equal the number of variables within the VARY statements for the 
SYSBEG-SYSEND loop. 

* 

2.5 MINIMIZE STATEMENT 

The minimize statement, which defines objective functions for optimizations, 
takes the following form: 

MINIMIZE exp 

Here, "exp" is an algebraic expression of variables known at the end of the loop in which 
the statement occurs. As with the expressions used in the CONSTRAIN statement, there 
is a length restriction of 72 characters. Longer expressions may be reduced by using PLI 
statements. If MINIMIZE is used within a loop, the number of variables in the VARY 
statement should be greater than the number of equality constraints; otherwise, there 
will be no extra degrees of freedom available over which to perform the optimization. 

Since max f(x)= -min(-f(x)), one can maximize a function by minimizing the 
negative of that function. 
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2.6 SWEEP STATEMENT 

Used to define a parameter sweep, the SWEEP statement takes the following 
form: 

SWEEP variablenarae = specification 
; variable name = specification 

Here, "variable name" is the name of the variable to be swept over and "specification" is 
any legitimate PL/I do-loop specification. Thus, the following are all valid SWEEP 
statements: 

SWEEP variable_name = valuel TO value2 BY valueS 
SWEEP variable_name = v a l u e l , va lue2 , valueB TO value4 
SWEEP variable_name = v a l u e l , value2 WHILE( expl = exp2 ) 

The last example shows that conditional termination of the sweep is also possible. In this 
case, the variable being swept over takes the values "valuel" and then "value2," but only 
if "expl" = "exp2." The PL/I do-loop UNTIL option may also be used in the SWEEP 
statement. 

The specifications are limited to 72 characters, including the variable name and 
"=" sign. If the SWEEP statement is used within a SYSBEG-SYSEND loop, then 
CONSTRAIN, MINIMIZE, or VARY statements should not be used within this same loop; 
however, these types of statements may be used in another SYSBEG-SYSEND loop nested 
within the SWEEP loop. 

2.7 INTEGRATE STATEMENT 

The INTEGRATE statement defines the starting time and output times used 
within the dynamic simulation. The last specified output time also defines the 
termination time. The form of the INTEGRATE statement is as follows: 

INTEGRATE TSTART=t;start TOUT= spec , spec , spec , spec . . 
METH=value TASK=value RTOL=value ATOL=value 

where "tstart" is the starting time (usually zero) unless the current job is a restar t from a 
previous computer run. "Spec" takes one of the following two forms: 

value TO value BY value 

value 
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The first TOUT value should be a number greater than the TSTART time. Output is 
always generated for the TSTART t ime. METH is set either at 10 (for an explicit 
variable-order, variable-step Adams method up to twelfth order) or 21 (for Gear's stiff 
method). TASK is used to prevent integrating beyond the TOUT values if set to a number 
greater than 1. TASK = 1 is the normal mode, in which the integrator may integrate 
beyond the TOUT values and then interpolate at the output values. RTOL and ATOL are 
relative and absolute tolerances used within the integration. If the parameters TSTART, 
METH, TASK, RTOL, and ATOL are omitted, they assume the values 0.0, 21, 1, 10"*, and 
10" , respectively. 

2.8 STEADY STATEMENT 

The STEADY statement is used to generate a steady-state starting point for the 
dynamic simulation. The form of the steady s ta tement is as follows: 

STEADY RTOL=value ATOL=value 

where RTOL and ATOL are optional parameters specifying the relative and absolute 
tolerances used in determining the steady-state solution. 

2.9 CONTROL STATEMENT 

The CONTROL statement defines dynamic-system controls. These may take the 
form of additional equations to be integrated or algebraic equations to be solved at each 
value of t ime. The general form of the CONTROL statement is as follows: 

CONTROL spec ; spec ; spec . . . 

Here, "spec" is expressed either as * 

D DT v a r i a b l e = express ion 

or as 

express ion l=express ion2 USING v a r i a b l e 

The first form defines an additional differential equation, where D DT represents the 
time-derivative operator. The second form is used to define algebraic constraints, where 
"expressionl" is constrained to equal "expression2" by suitably varying the "variable" 
specified after the key word USING. 
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2.10 DATA STATEMENT 

The DATA statement defines the values of the various input parameters used in 
the models. Where it is used, the DATA statement should be the last s tatement within 
the STRUCT file. The general form of the DATA statement is as follows: 

DATA header va r i ab le = va lue ; 
header va r i ab le = va lue ; 

where "header" is optional and is used to store major levels of PL/I aggregate variables 
to be used with succeeding variables. If "header" is used, it should be followed by a blank 
space, and all variables belonging to this PL/I aggregate should begin with a period. 

As an example, suppose we wish to assign values to two parameters (say, PARMl 
and PARM2) of a model Ml and to three parameters (PARMl, PARM2, and PARM3) of a 
model M2. We would accomplish this by the following statements: 

DATA Ml .PARMl=value; .PARM2=value; 
M2 .PAR.Ml = value; .PARM2=value; .PARM3=value; 

Other input parameters for other models may be assigned values in like fashion. No 
requirements govern the order of parameter assignment. (The names and meanings of all 
the model parameters are presented in Chapter 4.) 

It is also possible to use algebraic expressions in place of "value." In this case, 
any variable name used should have a value before the expression is encountered. For 
example, continuing with the previous DATA statement, one could write: 

M3 .PARM1=M1.PARM1*M2.PARM2; 

2.11 SWITCH STATEMENT 

The SWITCH statement is used to define various controlling parameters 
whenever the equation solvers or optimizers are used (i.e., whenever VARY has been 
specified). The form of the statement is as follows: 

SWITCH MAXIT=value DEL=value ACC=value PRINT=value 

where "value" is a number representing the value of the preceding parameter, MAXIT is 
the maximum allowable number of iterations that may be performed within this loop, 
ACC is the termination criterion, DEL is a value used to determine perturbations of the 
independent variables, and PRINT is a print switch used to obtain output from the 
equation solvers and optimizers. 
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2.12 PU STATEMENT 

The PLI statement is used to code PL/I statements within the STRUCT file. The 
PLI key word should appear before any such statements are listed. All PL/I statements 
should be terminated by a semicolon. SALT stores PL/I statements internally as 
character strings of finite length; no PL/I statements should contain strings of nonblank 
characters longer than about 50 characters. Any other SALT key word will terminate the 
insertion of PL/I statements, so the use of SALT key words within PL/I comments should 
be avoided. 
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3 MODELS 

3.1 MODEL AND FLOW VARIABLES 

In general, each model within the system has associated with it a PL/I structure 
variable containing not only the input parameters of the model, but also all of the output 
parameters and saved values of the flows processed by the model. The flows are also 
defined by PL/I structure variables containing the various parameters associated with the 
flows. 

It is not entirely necessary to know the structure of the flow variables in order to 
use the SALT code, but it is useful to have some idea of what variables are carried along 
with the flow. The gas flow (GAS), a typical flow variable, is defined by the following 
PL/I structure: 

1 GAS, 
2 NAME CHAR(16), 
2 ID CHAR(4), 
2 AT0M(8) FL0AT(16), 
2 PROP, 

3 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16). 
2 COMP, 

3 (XAR, XCH4, XCO, XC02 , XH, XH2 , XH20, XH2S, XK, XKOH , XNO, XN2 , 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS.XNH3.XS.XCL) FL0AT(16), 

2 SOL, 
3 WTF FL0AT(16), 

In this structure, NAME is a character string containing the name of the flow as used 
within the SALT input. The ID character string is used to define the type of properties 
code used with the flow. The substructure PROP contains the variables defining the 
thermodynamic conditions of the flow. The individual elements of PROP — TEMP, 
PRES, ENTH, ENTP, QUAL, RHO, VEL, and MASS - are the flow's temperature, 
pressure, enthalpy, entropy, quality, density, velocity, and mass flow ra te , respectively.* 
ATOM(8) represents the atomic weight fractions of the flow constituents — argon, 
carbon, hydrogen, potassium, nitrogen, oxygen, sulfur, and chlorine. The substructure 
COMP is used to hold the molar fractions of the individual species in the flow. Thus, 
XAR represents the molar fraction of Ar, XCH4 represents the molar fraction of CH. , 
and so on. The solids weight fraction entrained in the flow is represented by SOL.WTF. 

Not all of the variables listed here are used with all flows. Thus, if the value 
assigned to ID is "GAS," then all variables within the flow are used; however, if ID is 
"H20," only the information within the PROP substructure is used. 

The form of the flow structure is not dictated by the SALT code but by the 
developer of the models. In general, SALT can handle any type of flow structure . 

*In general, SI units are used for all quantities associated with SALT models; pressure, 
however, is measured in atmospheres. See App. C for further details. 
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As an example of a typical model PL/I structure, the gas-turbine (GT) model 
structure takes the form: 

1 GT BASED(GT P ) , 
2 
2 

2 

2 

2 

2 

NAME CHAR^ie), 
FLC, 
3 FNAME CHARde), 
3 ID CHAR(4), 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL, 

3 COMP, 
A (XAR,XCH4,XCO,XC02, 
XO,XOH,X02,XS02,XHCL, 

3 SOL, 
4 WTF FLOATde), 

PARM, 
3 DDNAME CHAR(7), 
3 MODE CHARdO), 
3 EFFICIENCY FL0AT(16), 
3 MECH EFF FLOATde), 
3 EXIT PRES FLOATde), 
3 MASS FACT FLOAT(ie), 
3 M FACT FLOATde), 
3 PRDES FLOATde), 
3 PRES RATIO FL0AT(16), 
3 INIT BIT(l), 
POWER, 

,XH,XH2, 
,XCH30H, 

,RHO,VEL,MASS) 

,XH20,XH2S,XK, 

,xc, 

3 (INPUT,PRODUCED,CONSUMED,LOSS) 
PRATIO, 
3 PTR POINTER, 
COST FLOATde); 

,XC0S,XNH3, 

FLOAT(ie), 

• 

> FLOATde), 

XKOH,XNO 
XS,XCL) 

i,XN2, 
FLOATde), 

• 

Each variable within such a structure is referenced by adjoining the higher-level 
structure names. Thus, the exit pressure of the gas turbine, denoted as EXITPRES, is 
designated by GT.PARM.EXITPRES. (Intermediate-level names may be omitted if the 
resulting name is unambiguous.) 

In general, the PARM substructure of any model represents all of the inputs to 
the model (excluding the flows). The PARM substructure is different for each model. In 
addition to the input parameters, the PARM substructure may also contain various output 
parameters that are calculated by the model. Other output parameters may be put into 
other substructures, which may be of similar form for all models. For example, the 
POWER substructures of all models are of the same form; this common form permits 
these substructures to be operated on in the same way for each model, as in summing up 
the POWER structures to determine plant power. 

The flows processed by a model represent some of the most important outputs 
from the model, so most of the flows (on leaving the model) are saved in model 
substructures. These substructures, at least for the flows structurally similar to GAS, 
are denoted as "FL" followed by the entry name used to process the flow; if the entry 
processes more than one flow, an additional designator follows the entry name. For 
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instance, the heat-exchanger model (HX) has two flow substructures, saving the hot and 
cold flow streams from the model. The hot stream, processed by the "H" entry to the 
model, is saved in the substructure named "FLH;" the cold flow, processed by the C 
entry, is saved in "FLC." In this case, because each entry only processes one flow, no 
additional designations after the entry name are needed. The feedwater-heater model 
(FH) also has a hot ("H") and a cold ("C") entry point. The hot entry processes two flows, 
which are saved in the substructures FLHl and FLH2. After a model has performed its 
calculations, the exit flow conditions (temperature, pressure, etc.) can always be 
referred to using these variables (FLH, FLC, etc.). Thus, the value of the exit 
temperature from GT 1 is contained in GTl.FLC.TEMP. 

Before any model is called (i.e., specified in a PROCESS statement), each of its 
input variables must have a value assigned to it. These assignments may be done in three 
different ways. The first way is to use the initial at tr ibute, giving the variables a default 
value; this is accomplished within the INTF file and is described later. (Most of the input 
variables have some input default value.) The second way of assigning input values is to 
use one of the SALT language statements (e.g., VARY, SWEEP, or PLI assignment 
statements). Thus, one could write 

PLI ST_1.PARM.EXIT_PRES=10; 

to assign a value of 10 atm to the gas-turbine exit pressure. The third way is to use the 
DATA statement, as in the following: 

DATA ST 1.PARM.EXIT PRES=10.; 

3.2 INITIALIZATION OF PROPERTIES CALCULATIONS 

Most of the models process one or more fluid flows and are thereby required to 
perform calculations of thermodynamic or transport properties. Although detailed 
knowledge of these property-calculation procedures is not necessary, the user of the 
SALT code does need to know how to initialize these procedures. This is done by calling 
the "IN" entry in the general properties model (GP), using the following PROCESS 
statement: 

PROCESS GP_1:IN 

This entry does not require any flows and should be specified before any other model is 
called. It will read one or more data files, depending on the options specified in the GP 
model's parameters, so it should not usually be included within any iterative tasks. 

At present, steam and water properties are calculated by a procedure similar to 
that of the WASP code from the NASA-Lewis research center. Additionally, a very fast 
cubic B-spline fit of the steam properties is available for use in dynamic-system runs. 
Combustion-gas properties and equilibrium compositions are calculated by minimizing 
the Gibbs free-energy function. The GAS properties code, at present, handles only 23 
chemical species - Ar, CH^, CO, COj , H, H j . HjO. HjS, K. KOH. NO. Nj . O. OH. O j , 
SOj, CH3OH, HCl, C, COS, NH3, S, and Cl. A generic condensible-pure-substance 
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properties code is also available that can individually handle more than 400 different 
chemical species (chiefly light hydrocarbons). This procedure is based on the Lee-Kesler 
equation of state. Some special procedures are provided for handling liquid-metal 
properties. (Not all properties codes are, at present, available for use with all models.) 
All of the codes have been designed to interact with the component models by means of a 
common calling sequence (i.e.. by calling GP) in order to make the future expansion of 
the code easier. 

The actual properties procedure used by any flow is determined by the flow's 
ID. This ID value is one of the parameters of the flow (provided the flow is of the GAS 
type) and is initially assigned a value, like all the parameters of the flow, using the flow 
initiator model (see Sec. 4.2.7). If ID is assigned the value "GAS," the gas properties 
code is used with the flow. If ID is assigned the value "H20," then the steam-water 
procedure is used. If ID equals "THR," "JAN," or "LIQ," then the condensible-fluids code, 
the special code for handling single-species gases, or the special single-phase liquid code, 
respectively, is called. These last three codes may handle more than one type of fluid, so 
the name of the fluid is added to the ID string after "THR," "JAN," or "LIQ." For 
example, to use the liquid code for sodium, the ID would be "LIQ NA." The actual fluid 
names that can be used with each code are listed in the appendix. (A chemical-
equilibrium property routine for solutions is also a part of SALT, but the routine is not 
available in the present version of the code.) 

3.3 DEMAND-TYPE MODELS 

Some of the models developed require certain conditions to be met within the 
model that really put demands not on the input parameter of that model, but rather on 
input flow conditions beyond the model's control. The steam-drum model, for instance, is 
designed to work only with an input flow of a specified quality. The steam-drum model 
itself cannot simply alter its input flow, because the flow originates somewhere upstream 
of the drum. 

Demand-type models are developed whenever a real physical device actually 
creates or changes conditions upstream of itself. They may also be developed to improve 
computational robustness or efficiency when analyzing the system; the demand-type 
steam drum was, in fact, developed for this latter reason. The demand-type steam-drum 
model generates two saturated flows ~ a liquid and a steam flow ~ for whatever input 
flow exists, even if it is subcooled. In this way, there will always be a nonzero steam 
flow for use in any turbine train. The constraint on the inlet enthalpy to the drum, 
necessary to provide these two flows, is established using the SALT language. 

Some demand-type models exist only in certain modes of operation. For 
example, the heat-exchanger model, in the off-design mode, is a demand-type model. 
The model calculates a heat-transfer surface area for any input flow conditions. In the 
off-design mode, this area may not be equal to the actual value of the heat-transfer 
surface; if it is not, the heat load must be varied until the calculated area is equal to the 
actual area. This demand constraint cannot be established within the heat-exchanger 
model, because the model was set up to process the hot and cold flows at different stages 
in the analysis. 
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In general, these model demand constraints can be established in more than one 
way; it is up to the SALT user to decide how they will be met. For convenience, most of 
the constraints are evaluated within the model and assigned to the model parameter , 
denoted CONS. Thus, the difference between the steam-drum input enthalpy and that 
required by the model is denoted CONS. In this way, the constraints can be more easily 
set up within the SALT input. 

3.4 FLOWS USED IN STEADY-STATE MODELS 

As was indicated in Sec. 3.1, within the SALT code a flow is actually just a PL/I 
structure variable. At present, two main flow types — GAS and FUEL — are available 
for use with steady-state models. The GAS structure has already been shown in Sec. 3.1; 
this generic type is used for many different flows. Three other flows are provided — 
STM, AIR, and LIQ — that are structurally exactly the same as GAS (i.e., they are of the 
same generic type). These additional flows are provided for the sake of clarity within 
the SALT inputs when referring to the flows. For example, the heat-exchanger model 
(which actually requires flows of the generic type of GAS) may process a STM flow on its 
hot side and an AIR flow on its cold side. 

The other flow type, FUEL, is used to represent a fuel flow and has the following 
PL/I structure: 

1 FUEL, 
2 NAME CHARde), 
2 PROP, 
3 (TEMP,MASS,HHV) FLOATde), 

2 WEIGHTS, 
3 (C,H,0,N,S,CL,H20,ASH) FLOATde); 

where NAME represents the name of the flow as it is used within the SALT inputs, PROP 
is a substructure containing the elements, TEMP represents the flow's temperature, 
MASS is the mass flow rate , and HHV is the higher heating value. The substructure 
WEIGHTS is used to hold the weight fractions of carbon (C), hydrogen (H), oxygen (O), 
nitrogen (N), sulfur (S), chlorine (CL), water (H20), and ash (ASH). 
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4 STEADY-STATE MODELS 

All of the models used by SALT are compiled into run-time libraries that are 
searched (during a linking step) to include within the analysis only those models actually 
used in the system. In general, it is possible to have more than one library of models; 
different libraries may or may not be compatible in terms of the model names included 
and the flow types processed. Thus, for example, two different libraries could be 
generated with two different IN models to initiate two different flow types. In this case, 
the two different model libraries (and their corresponding interface files; see Sec. 7.1) 
should not be concatenated or used together at run time. At present, the models used in 
analyses of purely steady-state systems are included in one library, while those used in 
analyses of dynamic systems are included in another library. 

The models described in this chapter are the most basic ones available within the 
SALT model libraries.* These models were developed for use in fossil-energy, open-cycle 
magnetohydrodynamic (MHD), fuel-cell, liquid-metal MHD, ocean thermal-energy 
conversion (OTEC), and other power plants where the most prominent flow type is GAS 
(of course, as indicated in Sec 3.4, LIQ, AIR, or STM may be used instead). Most of 
these models process one or more flows of this type. 

4.1 GENERIC COMBUSTOR/GASIFIER MODEL 

The CB model, representing a generic combustor, requires three flows; the first 
two are inputs and the third is an output. The first flow represents the fuel input and is 
of the generic type FUEL. The second flow represents any oxidizing flow, while the third 
represents the combustion-gas output; these latter two flows are of the generic type 
GAS. The CB model, as a generic combustor, can also model a gasifier, where the output 
gas-flow conditions are at chemical equilibrium. Options are also provided for ash 
removal and potassium injection (used for MHD systems). 

The parameters of the CB model are as follows: 

HEATLOSSFRAC — Specified fraction of the thermal input (based on the 
higher heating value of the fuel) lost from the combustor due to heat loss. 

FUEL M ~ Calculated value of the fuel mass after any ash removal. 

FUEL_HHV — Corrected higher heating value of the fuel after any ash 
removal. 

ASH M — Calculated amount of mass removed from the fuel as ash. 

•Further information on these models and their use, including declaration structures, is 
available in the authors' companion volume to the present report, The Systems Analysis 
Language Translator (SALT): Programmer's Guide, Argonne National Laboratory Report 
ANL/FE-85-04 (March 1985). 
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ASH M FUEL ~ Calculated amount of mass left in the fuel as ash. 

ASH DET - Specified weight fraction of the ash within the fuel after any ash 
rejection. 

FUEL HEATFORM — Heat of formation of the fuel at a pressure of 1 atm 
and a temperature of 298.16 K. 

H20 M FUEL — Calculated amount of water left in the fuel. 

SLURRY CONC — Calculated weight fraction of solid fuel to total weight of 
fuel (useful when CB is modeling a gasifier). 

CARBON BURNOUT — Specified fraction of the carbon in the fuel that is 
actually bWned; the rest of the carbon is carried over with any ash carry-over. 

K MASS — Calculated weight of potassium in the output gas flow. 

K FRAC — Specified weight fraction of potassium in the output gas flow (used 
to model potassium seed injection in MHD systems). 

OX M — Calculated mass of oxygen needed for stoichiometric combustion of 
the fuel. 

STOICH — Calculated fraction of the mass of total oxygen in oxidizer flow to 
the mass, OX M. 

PRES_DROP_FRAC — Specified fraction of the input oxidizer pressure 
representing the pressure drop through the combustor. 

BC(8),BO(8),BG(8) — Calculated elemental mass fractions for the fuel, 
oxidizer, and output gas flows, respectively. 

4.2 GENERIC SYSTEM-COMPONENT MODELS 

4.2.1 Compressor Model 

The compressor model (CP) requires one pass-through flow of the generic type of 
GAS. A simplified off-design option is also provided. In the design mode, the model 
obtains the exit flow conditions by calculating an isentropic compression to a specified 
exit pressure and then corrects for a specified isentropic efficiency. In off-design use, a 
nondimensional mass factor is also calculated. 

In the off-design mode, the model requires an initializing call to CPIN to obtain a 
table of pressure ratios vs. the mass factor (normalized by the design-point mass 
factor). During flow processing, the model then uses this table to calculate (based on the 
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inlet mass factor) the pressure ratio and, hence, the exit pressure. The model then 
proceeds as in the design mode. 

The parameters of the CP model are as follows: 

DDNAME — Character string representing the file name of the off-
design pressure-ratio-vs.-mass-factor table. This variable is not needed 
in the design mode. The information in this file consists of (1) an 
integer specifying the number of pressure-ratio values, followed by (2) 
the list of pressure-ratio values and by (3) the list of normalized mass-
factor values. 

MODE ~ Character string representing mode, either "DESIGN" or 
"OFF-DESIGN." 

EXITPRES — Specified exit pressure for the design mode. 

EFFICIENCY ~ Specified isentropic efficiency of the compression 
process. 

MASSFACT — Calculated mass factor for use in off-design calcula
tions. This factor is an output in the design mode, but it must be an 
input in the off-design mode. 

MFACT ~ Calculated value of the normalized mass factor used in off-
design calculations. This variable is assigned the value 1 at the design 
point. 

PRESRATIO ~ Calculated pressure ratio across the compressor. 

4.2.2 Deaerator Model 

The deaerator model (DEAR) requires two steam flows, the first of which is a 
pass-through flow representing not only one of the input flows, but also the output flow 
from the model. The DEAR model is a demand-type model, requiring that the exit flow 
be saturated. 

The only parameter of the DEAR model is QUAL, the output flow quality from 
the model. For proper modeling of a deaerator, this parameter should be made to equal 
zero by imposing some system constraint. 

4.2.3 Flash Model 

This model (FLSH) represents a flash tank iri which the entering flow is 
isenthalpically expanded through a given pressure drop. The model requires two flows; 
the first represents the incoming fluid (on input) or the vapor phase of the flash (on 
output). The second flow (an output flow) represents the liquid phase of the flash. 
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The parameters of the FLSH model are as follows: 

PRES DROP — Specified pressure drop through the device. 

QUAL — Calculated quality of the input flow. 

4.2.4 Feedwater-Heater Model 

The closed feedwater heater modeled by FH incorporates desuperheating, 
condensing, and drain-cooling zones. The model is set up to process the hot flows ~ 
extracted from the turbine and from higher-pressure feedwater heaters — in one entry 
and the cold feedwater flow in another. The hot-flow entry (FHH) requires one pass-
through flow (representing the turbine extraction flow on input and the drain-cooler exit 
flow on output) and one input flow (representing any cascaded flow from a higher-
pressure feedwater heater). This hot-flow entry must be called before the cold flow 
entry (FHC), which requires one pass-through flow. All of the flows used within the FH 
model are of the generic type STM. 

The parameters of the FH model are as follows: 

SUBCOOL — Specified amount of subcooling of the drain-cooler exit 
flow. 

HEAT — Calculated total amount of heat transferred from the hot 
flows to the cold flow. 

AREA — Calculated total surface area of the desuperheating and 
condensing regions of the feedwater heater. 

TTD — Calculated terminal temperature difference, defined as the 
difference in temperature between the hot-flow exit temperature from 
the condensing region and the cold-flow exit temperature from the 
desuperheating region. 

TSAT — Calculated hot-flow saturation temperature at the pressure 
within the condensing region. 

FWVEL — Specified velocity of the cold feedwater flow through the 
condensing region. 

DCTD — Calculated drain-cooler temperature difference, defined as 
the temperature difference between the hot-flow exit temperature 
from the heater and the cold-flow entrance temperature. 

HDP ~ Specified flow pressure-drop fraction. (The pressure drop is 
equal to this parameter times the input pressure.) 



33 

CDP(3) — Specified array of cold-flow pressure-drop fractions through 
the desuperheating section, CDP(l); the condensing section, CDP(2); 
and the drain-cooler section, CDP(3). 

A(3) — Calculated array of heat-transfer-surface areas for the 
individual feedwater-heater regions: desuperheater, 1; condenser, 2; 
and drain cooler, 3. 

Q(3) ~ Calculated array of heat-transfer values for the three regions of 
the heater. 

U(3) — Calculated array of heat-transfer coefficients for the three 
regions of the heater. 

LMTD(3) — Calculated array of log mean temperature differences for 
the three sections of the heater. 

HTEMP(4) — Calculated end-point temperatures of the hot flow 
between the three regions of the heater, where HTEMP(l) is the inlet 
temperature and HTEMP(4) is the exit temperature from the heater. 
Because HTEMP(2) and HTEMP(3) represent the hot-flow condensing-
region temperatures, these two temperatures are both equal to the 
saturation temperature. 

CTEMP(4) — Calculated cold-flow temperatures between the three 
regions of the heater, where CTEMP(l) is the exit temperature and 
CTEMP(4) is the cold-flow inlet temperature. 

4.2.5 Heater Model , 

The heater model (HT) requires one pass-through flow of the generic type GAS. 
The parameters of the model are as follows: 

HEAT — Specified heat added to the flow. 

TSET ~ Specified exit temperature of the flow if set to a number 
greater than zero. This exit temperature determines the value of 
HEAT; if T SET is set to zero, then HEAT must be input. 

PRESDROPFRAC — Fraction of the input flow pressure used as a 
pressure drop through the heater. 

4.2.6 Heat-Exchanger Model 

The heat-exchanger model (HX) is set up to process the hot flow in one entry 
(HXH) and the cold flow in another entry (HXC). Both entries require one pass-through 
flow of the generic type GAS. Either entry may be called first. 
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The model also includes options for calculating heat-transfer-surface areas using 
specified heat-transfer coefficients. These coefficients can be adjusted as functions of 
mass flow rate or temperature to simulate off-design changes. Thus, the model can be 
run off-design, but the surface areas (as calculated in the code) must be constrained to 
their design values outside the model (see CONS, below). 

The parameters of the HX model are as follows: 

MODE — Specified character string taking the values of "DESIGN" or 
"OFF-DESIGN." 

TYPE — Specified character string taking the values "PARALLEL" or 
"COUNTER" to indicate that the heat exchanger is of either a parallel-
flow or counter-flow configuration. 

HEAT ~ Specified heat transfer from the hot to the cold fluid (may be 
overridden if T SET is set). 

HEAT FLUX — Calculated average heat flux in the exchanger. 

T_SET(2) — An array of exit- temperature values; the first element is 
for the hot flow, the second, for the cold flow. Only one of these 
elements should be assigned a value (their default value is zero), and 
that one must correspond to the entry that is called first. If either 
element is assigned a value, then the heat transferred is calculated 
from the T S E T value rather than from the value set in HEAT; T SET 
should be used only if the flow being assigned an exit temperature is 
definitely not in the two-phase region. 

PRESDROP FRAC(2) - Specified array of the fraction of input flow 
pressure used as a pressure drop through the device: hot flow, 1 and 
cold flow, 2. 

U ~ Calculated overall heat-transfer coefficient from the hot to the 
cold fluids. 

AREA — Total heat-transfer area, calculated in the design mode and 
specified in the off-design mode (however, see CONS). 

INTEMP(2) — Storage for the inlet fluid temperatures. 

AVGTEMP(2) - Calculated average temperatures of the hot and cold 
fluids. 

ST(2) — Calculated surface temperatures between the fluids and the 
wall. 

LMTD — Calculated log mean temperature difference between the 
fluids. 
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UR(3) — Specified array of heat-transfer coefficients for hot fluid to 
wall (1), wall to cold fluid (2), and through wall (3). 

UC(2) — Specified array of correction factors for the UR(1) and UR(2) 
values in the off-design mode. If a value of UC exceeds 100, then the 
value of UR is adjusted as UR-(UC/AVGTEMP)^ or else as 
UR-(DM/MASS)^^, where MASS is the fluid-mass flow rate and DM is 
defined below. These parameters are used only in the off-design mode. 

DM(2) — Specified input values of the design mass flow rates (used only 
in the off-design mode, to correct the heat-transfer coefficients). 

CONS — Calculated off-design parameter representing the difference 
between the calculated and specified surface areas. In the off-design 
mode, this variable must be constrained to equal zero if the model is to 
yield the correct results. 

PINCHPOINT ~ Specified parameter representing the minimum value 
of the MEANTDIF for which no error message indicating occurrence of 
a pinch-point violation is printed. 

CAL(2) — "Flags" used by the code to indicate when both hot and cold 
entries have been called and, thus, when the surface areas are to be 
calculated. 

4.2.7 Flow-Initiator Model 

The flow-initiator model (IN) requires one pass-through flow of the generic type 
GAS. The IN model also has two additional GAS flow-processing entries, INCYCL and 
INCOMP. The INCYCL entry calculates the differences in temperature, pressure, etc. of 
the flow between this entry and that of the INC entry. This entry is useful in setting up 
recycle loops. 

The INCOMP entry is used to feed back to the INC entry the values of the 
INCOMP entry's GAS flow compositions. By caUing this entry with the parameter ITER 
(incremented by one for each call), INCOMP will take its input flow composition and 
assign it to the model's COMP parameter. In this way, a simple fixed-point iteration 
scheme can be set up to converge on gas compositions in recycle loops by sweeping ITER 
from one to some maximum iteration number and by calling INC at the beginning of the 
loop and INCOMP at the end of the loop. 

The parameters of the IN model are as follows: 

ID ~ Specified character-string variable representing the type of 
property code used in calculating thermodynamic properties of the 
flow. 
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ATOM(8) — Calculated array of atomic-weight fractions of elements of 
the flow, if the ID is set to GAS. 

T — Specified temperature of the flow. If T is set to zero, the flow is 
assumed to be a condensible fluid and the saturation temperature is 
used. In this case, the enthalpy of the flow is determined using Q. 

P — Specified pressure of the flow. 

H — Calculated enthalpy of the flow. 

S — Calculated entropy of the flow. 

Q — Specified quality of the flow, used when T is set to zero. Flow 
quality Q may be greater than one (to represent superheating) or less 
than 0 (to represent subcooling). 

V — Specified velocity of the flow. 

M — Specified mass flow rate of the flow. 

COMP — Specified structure variable defining the molar fractions of 
the separate species that may be used with the GAS property code. 
The molar fraction of each species is specified as "X" followed by the 
species' chemical formula (e.g., XH2, XC02, XNH3). 

SOL — Structure variable representing the weight fractions of 
entrained solids within the gas flow. At present, SOL has only a single 
scalar (WTF) within its structure. This WTF represents the fraction of 
the flow's mass flow rate that is solid. 

DT, DP, DV, DH, DM — Calculated differences in T, P, V, H, and M 
between the flow originating from the INC entry and the flow entering 
the INCYCL entry. 

ACC — Termination criterion employed when the INCOMP entry and a 
SALT-defined parameter sweep over ITER are used to close a recycle 
loop over compositions. If the maximum difference in species 
concentrations between the INC and INCOMP entries is less than ACC, 
then ITER is set to 1000. 

ITER — Iteration counter used in the INCOMP entry. 

ITERS — Saved previous value of ITER. 

PRINT ~ Print switch used in the INCOMP entry. 



37 

4.2.8 Flow-Mixer Model 

The flow-mixer model (MX) requires two flows. The first is a pass-through flow, 
representing one of the two input flows and also the output flow. The second flow is the 
second input flow. Both of these flows are of the generic type GAS. 

The model does not require any parameters. 

4.2.9 Steam-Condenser Model 

Any of the condensible fluids (in addition to steam) may be used with the steam-
condenser model (SC). The model requires only one pass-through flow, representing both 
the input flow and the condensed output flow. This flow is of the generic type STM. The 
energy extracted by the condensing process is saved in the POWER substructure. 

The only parameter of the SC model is EXIT PRES, the specified exit pressure of 
the model. If EXIT PRES is set to zero, then the exit pressure is assumed to be equal to 
the inlet pressure. 

4.2.10 Steam-Drum Model 

The steam-drum model (SD) requires two flows, both of the generic type STM. 
The first is a pass-through flow, representing the two-phase input flow and, as an output, 
the downcomer flow. The second flow is an output flow, representing the saturated-
steam flow. The model is a demand-type model; the input flow must be of a specified 
steam quality. 

The parameters of the SD model are as follows: 

QUAL ~ Specified steam quality of the input flow. 

CONS — Difference between the enthalpy of the incoming flow and 
that required by the specified steam quality. This parameter is 
calculated by the model to aid in obtaining the correct input steam 
quality. Thus, CONS should be constrained to equal zero outside the 
model. 

4.2.11 Clow-Splitter Model 

The flow-splitter model (SP) requires one pass-through flow, representing the 
input flow and (on output) one of the two output flows. A second flow to the model 
represents the second output flow. Both of these flows are of the generic type GAS. The 
SP model provides options for splitting the flow not only by mass, but also by 
composition. Thus, the SP model can be used to model processes that split off specific 
species of the input flow. 
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The parameters of the SP model are as follows: 

SPLIT RATIO — Specified fraction of the input flow mass split off into 
the second flow. If SPLIT RATIO is set , then SR (see below) should not 
be used. 

SPLITMASS — Specified portion of mass flow rate split off into the 
second flow, if set greater than zero. If this variable is set to 
zero, then the mass flow rate split off is defined by SPLITRATIO. 
SPLIT MASS must be less than the mass flow rate of the input flow. 

SR — Specified structure variable representing the split ratios by 
weight fractions of the species flow rates split off into the second 
flow. The elements of this structure are the same as those of the 
COMP substructure within the generic GAS flow, but without the "X" 
prefix (e.g., AR, CH4, 02 , S02). If the SR structure is specified, then 
the mass flow rate of the second flow is determined by the sum of the 
flow rates of the individual species. SR should not be specified if 
SPLIT RATIO is used. 

4.2.12 Pump Model 

The pump modeled by PUMP handles liquids and requires one pass-through flow 
of the generic type LIQ. Rather than modeling the exact energy changes through the 
pump by iterating over the property procedures, PUMP uses an approximation. It 
calculates the power required as the change in pressure, divided by the density, times the 
efficiency. The exit enthalpy of the flow is obtained by adding this required power to the 
inlet flow enthalpy. 

The parameters of the PUMP model are as follows: 

EXIT PRES — Specified exit pressure of the flow. 

EFFICIENCY — Specified efficiency of the pump compression. 

4.2.13 Fuel-FIow-Initiator Model 

The fuel-flow-initiator model (INF) requires one pass-through flow of the generic 
type FUEL. The parameters of the INF model are as follows: 

T — Specified temperature of the fuel. 

M — Specified mass flow ra te of the fuel. 

HHV — Specified higher heating value of the fuel. 
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WEIGHTS ~ Structured variable representing the fuel composition by 
weight fractions. The WEIGHTS structure includes the following 
variables, where each variable represents the weight fraction of the 
substance in parentheses: C (carbon), H (hydrogen), O (oxygen), N 
(nitrogen), S (sulfur), Cl (chlorine), H20 (water), and ASH (ash). 

4.2.14 Fuel-Dryer Model 

The fuel-dryer model (DRY) has two flow-processing entry points, DRYC and 
DRYH. The DRYC entry, which processes the fuel input and requires a pass-through 
flow of the generic type FUEL, performs the calculations involved in drying the fuel to a 
specified water fraction and calculates the heat energy required to vaporize the removed 
water. This entry must be called before the DRYH entry, which processes the hot-gas 
drying flow and should be of the generic type GAS. 

The parameters of the DRY model are as follows: 

H20 DET ~ Specified weight fraction of water in the dryed fuel. 

H20 M — Calculated mass of water removed from the fuel. 

HEATREQUIRED — Calculated energy required to vaporize the water 
mass removed. 

4.2.15 Nozzle Model 

The gas-nozzle model (NZ) requires one pass-through flow of the generic type 
GAS. The parameters of the NZ model are as follows: 

EFFICIENCY ~ Specified efficiency of the nozzle expansion, defined 
as the isentropic pressure drop necessary to accelerate the flow to the 
specified exit velocity, divided by the actual pressure drop. 

EXIT VEL ~ Specified exit velocity of the gas flow. 

PRINT — Specified print switch; if set to a number greater than zero, 
this switch will print out the iterations within the model used in 
obtaining the isentropic exit pressure. 

4.2.16 Diffuser Model 

The gas-diffuser model (DF) requires one pass-through flow of the generic type 
GAS. The parameters of the DF model are as follows: 

EXIT VEL — Specified exit velocity of the gas flow. 
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PRES RECOVERYCOEF — Specified value of the pressure-recovery 
coefficient, defined as the actual pressure drop across the diffuser 
divided by the difference in the total s ta t ic pressure at the diffuser 
inlet. 

PRINT — Specified print switch; if set to a number greater than zero, 
this switch will print out the iterations within the model used in 
calculating the total inlet pressure. 

4.2.17 Stack Model 

The stack model (SK) requires one pass-through flow of the generic type GAS. 
The parameters of the SK model are as follows: 

A TEMP — Specified ambient temperature at the stack exit. 

A PRES — Specified ambient pressure at the stack exit. 

4.3 TURBINE MODELS 

4.3.1 Steam-Turbine Model 

The steam-turbine model (ST) provides options for modeling a typical extraction 
stage, as well as inlet and exhaust stages. The model requires one pass-through flow and 
one output flow, representing any extracted flow from the turbine stage. This extracted 
flow is at the same thermodynamic conditions as the pass-through flow. Thus, the 
extracted flow is extracted at the exit of the turbine stage. Turbine trains with multiple 
extraction points would be modeled using multiple ST models. Both of the flows to the 
ST model are of the generic type STM. 

The model provides for an off-design mode by calculating a flow factor in the 
design mode that is then used in the off-design mode. This flow factor represents a 
nondimensional flow rate that the turbine stage can pass. In the off-design mode, the 
parameter CONS (based on this flow factor) should be constrained to equal zero. 

Tables of exhaust-loss enthalpy corrections for use in the exhaust stage may be 
read in by calling STIN. These tables define the value of the exhaust-loss enthalpy vs. 
the turbine inlet mass, normalized by dividing by a design-point mass. This exhaust-loss 
enthalpy is then added to the exit flow enthalpy from the turbine. (In design-mode 
calculations, this design-point mass flow ra te is assigned the value of the inlet mass.) 

For the inlet turbine stage in the design-mode, the exit pressure is calculated to 
give a required steam flow velocity. This required velocHy is obtained from a specified 
turbine-wheel speed and a specified wheel-to-flow-velocity rat io. The efficiency is also 
calculated as a function of this wheel-to-flow-velocity ratio for both the design and off-
design modes. 
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The parameters of the ST model are as follows: 

DDNAME ~ Specified character string representing the file name that 
STIN will read to obtain the table of exhaust-loss enthalpies. 

MODE — Specified character string representing either "OFF-DESIGN" 
or "DESIGN." In modeling throttle stages, the characters "IN" may also 
be appended to the end of the MODE string. 

EXIT PRES — Specified exit pressure of the turbine. 

EFFICIENCY — Specified efficiency of the turbine expansion. 

MECH EFF — Mechanical efficiency of the turbine. Any 
thermodynamic energy extracted from the turbine is multiplied by this 
efficiency to obtain the usable power. 

SR — Specified split ratio of the extracted flow. The mass flow rate of 
the extracted flow is equal to SR times the input mass flow rate. 

EXTMASS — Specified extracted mass flow rate. If EXTMASS is 
specified, it overrides SR. (EXTMASS should be less than the inlet 
mass flow rate.) 

FLOW_FACT — Flow factor, calculated in the design mode and 
specified in the off-design mode. 

EXHAUSTLOSS — Specified or calculated value of the exhaust-loss 
enthalpy. If STIN has been called, this value is obtained from the 
tables; otherwise, the value may be specified as ̂ n input. 

DM — Specified value of the design-point mass flow rate in the off-
design mode. In the design mode, this parameter is set equal to the 
rate of inlet mass flow to the turbine. 

WV — Specified turbine wheel-to-flow-velocity ratio, used only in the 
turbine-inlet stage. 

WHEEL_SPEED — Specified turbine-wheel speed, used only in the 
turbine-inlet stage. 

CONS — Calculated parameter in the off-design mode, representing a 
measure of the mass flow rate that the turbine stage can pass for the 
various inlet conditions. This parameter should be constrained to equal 
zero during of f-design calculations. 

VOL FLOW RATE — Calculated volume flow rate through the turbine. 
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PRINT — Specified switch used to print out iterations in the turbine-
inlet-stage option during the calculation of exit pressure. 

4.3.2 Gas-Turbine Model 

The gas-turbine model (GT) requires one pass-through flow of the generic type 
GAS. A simplified off-design mode is also provided. 

In the design mode, the exit flow conditions are calculated by means of an 
isentropic expansion to the specified exit pressure. The exit enthalpy is adjusted using 
the specified isentropic efficiency. A nondimensional mass factor is then calculated for 
use in off-design calculations. 

In the off-design mode, an initial call to GTIN must be made to obtain a table of 
pressure ratios vs. normalized mass factors. This table is used during flow processing to 
obtain the pressure ratio for the calculated normalized mass factor. The exit flow 
conditions are then calculated by an expansion through this pressure ratio with the 
specified isentropic efficiency. 

The parameters of the GT model are as follows: 

DDNAME — Specified character string representing the name of the 
file that contains the off-design pressure-ratio table (needed only in the 
off-design mode). Information contained in this file is in the following 
order: (1) an integer representing the number of pressure-ratio values, 
(2) the list of pressure ratios, and (3) the list of normalized mass 
factors. 

MODE — Specified character string taking the values of "DESIGN" or 
"OFF-DESIGN." 

EFFICIENCY — Specified isentropic efficiency of the turbine 
expansion. 

MECHEFF — Specified mechanical efficiency; any thermal energy 
extracted through the turbine expansion is multiplied by this efficiency 
to obtain the useful mechanical-power output. 

EXIT PRES — Specified design-point exit pressure (an output from the 
model in the off-design mode). 

MASSFACT ~ Nondimeisi^r d nass factor calculated in the design 
mode and specified in the off-design mode. 

M_FACT — Calculated nondimensional mass factor normalized by 
dividing by the design-point mass factor. 
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PRDES — Design-point pressure ratio calculated in the design mode and 
specified in the off-design mode. 

PRES RATIO ~ Calculated pressure ratio across the turbine. 

INIT — A "flag" used by the code to initiate a reevaluation of the 
design-point mass factor on first entry to the model during the off-
design mode. The design-point pressure ratio may not be at the 
maximum pressure ratio specified in the off-design pressure-ratio 
table; therefore, the design-point mass factor is adjusted to reflect 
what it would be at the maximum ratio in the table. 

4.4 FUEL-CELL MODELS 

4.4.1 Molten-Carbonate Fuel-Cell Model 

The molten-carbonate fuel-cell model (MCFC) requires two pass-through flows of 
the generic type GAS. The first of these is the anode flow; the second, the cathode flow. 

The parameters of the MCFC model are as follows: 

CELL CURRENT — Specified current through each cell. 

CELL VOLTAGE — Calculated cell voltage. 

CELL TEMP — Specified average temperature of a cell. 

STACK VOLTAGE - Calculated total voltage across the cell stack. 

NO OF CELLS — Specified total number of cells in the stack. 

DELTAVOLT — Specified difference between the Nernst potential at 
the fuel cell exit and the cell voltage. 

FUEL UTIL — Calculated value of the fuel utilization. 

02 UTIL — Calculated value of the Oj utilization. 

C02 UTIL — Calculated value of the CO2 utilization. 

HF ~ Calculated value of the overall isothermal heat of reaction. 

E — Calculated Nernst potential at the fuel-cell exit. 
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4.4.2 Solid-Oxide Fuel-CeU Model 

The solid-oxide fuel-cell model (SOFC) requires two flows, both of the generic 
type GAS. The first flow represents the anode flow; the second, the cathode flow. 

The parameters of the SOFC model are as follows: 

CELL CURRENT — Specified current through each cell. 

CELL VOLTAGE - Calculated cell voltage. 

CELL TEMP — Specified average temperature of a cell. 

STACK VOLTAGE — Calculated total voltage across the cell stack. 

NO OF CELLS — Specified total number of cells in the stack. 

DELTAVOLT — Specified difference between the Nernst potential at 
the fuel-cell exit and the cell voltage. 

FUEL UTIL — Calculated value of the fuel utilization. 

02 UTIL — Calculated value of the Oj utilization. 

HF — Calculated value of the overall isothermal heat of reaction. 

E — Calculated Nernst potential at the fuel-cell exit. 

4.4.3 Phosphoric Acid Fuel-Cell Model 

The phosphoric acid fuel-cell model (PAFC) requires two flows, both of the 
generic type GAS. The first flow represents the anode flow; the second, the cathode 
flow. 

The parameters of the PAFC model are as follows: 

CELL CURRENT — Specified current through each cell. 

CELL VOLTAGE — Calculated cell voltage. 

CELL TEMP — Specified average temperature of cell. 

STACK VOLTAGE - Calculated total voltage across ceU stack. 

NO OF CELLS — Specified total number of cells in stack. 

DELTA VOLT — Specified difference between Nernst potential at fuel-
cell exit and cell voltage. 
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FUEL UTIL — Calculated value of fuel utilization. 

02 UTIL — Calculated value of Oj utilization. 

HF — Calculated value of overall isothermal heat of reaction. 

E — Calculated Nernst potential at fuel-cell exit. 

4.5 MAGNETOHYDRODYNAMIC-GENERATOR MODEL 

The magnetohydronamic-generator model (MG) simulates an MHD channel. The 
model has two entry points — MGH, used to model the hot gas flow through the channel, 
and MGC, used to model the coolant flow through the channel. The MGH entry must be 
called before the MGC entry. Both entries require flows of the generic type GAS. 

The parameters of the MG model are as follows: 

AREA INLET — Calculated inlet flow area of the gas flow. 

AREA OUTLET ~ Calculated outlet flow area of the gas flow. 

B FIELD — Specified value of the magnetic field. 

CONDUCTIVITY — Calculated value of the electrical conductivity of 
the gas flow at the channel exit. 

DELTA_LENGTH ~ Specified length increment along the channel. 
Calculations along the channel are performed at discrete locations, 
DELTA LENGTH apart. 

EXITPRES — Specified value of the cutoff pressure. Calculations 
along the channel terminate when the calculated pressure becomes less 
than this value. (Actual exit pressure will not necessarily attain this 
specified EXIT PRES value.) 

FARADAY CURRENT — Calculated value of the Faraday current. 

FARADAY FIELD ~ Calculated value of the Faraday electric field. 

FLOWRATIO — Calculated ratio of the channel length to the channel 
height at the exit. 

FRACTIONHEATLOSS ~ Calculated ratio of the heat loss to the 
coolant flow to the power produced by the channel. 

FRACTIONPRESLOSS — Calculated ratio of the pressure drop along 
the channel to the inlet pressure for the gas flow. 
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FRICTIONCOEF — Specified value of the friction coefficient (used in 
calculating the pressure drop along the channel). 

HALL FIELD — Calculated value of the Hall field. 

HALL_PARAMETER — Calculated value of the maximum Hall 
parameter at the channel inlet or exit. 

INVERTER EFF — Specified efficiency of the electrical inverter. 

LENGTH — Calculated length of the channel (a multiple of DELTA_ 
LENGTH). 

LOAD FACTOR — Specified value of the load factor along the channel. 

MACHNOINLET - Calculated value of the inlet-gas-flow Mach 
number. 

MACHNOOUTLET — Calculated value of the exit-gas-flow Mach 
number. 

POWERDENSITY ~ Calculated value of the power density within the 
channel. 

STANTONNO — Specified value of the Stanton number (used in 
calculating gas-side convective heat loss to the coolant flow). 

WALLTEMP — Specified wall-temperature value (used in calculating 
heat loss to the coolant flow). This temperature should be between the 
coolant and gas-flow temperatures. 

EXTRACTED — Calculated value of the enthalpy extracted from the 
gas flow. 

ABSORBED — Calculated value of the enthalpy absorbed by the coolant 
flow. 

4.6 COMPONENT MODELS FOR LIQUID-METAL SYSTEMS 

4.6.1 Liquid-Metal Pipe Model 

Liquid-metal flow through a pipe is modeled by MPIP, which requires one pass-
through flow of the generic type LIQ. The parameters of the MPIP model are as follows: 

FRIC FAC — Calculated friction factor of the flow within the pipe, 
established using simple Reynolds-number correlation. 
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Vise ~ Specified viscosity of the flow within the pipe. 

RE ~ Calculated Reynolds number of the flow within the pipe. 

FD — Calculated pressure drop per unit length of pipe due to the 
frictional effects of the flow on the pipe. 

FG ~ Calculated pressure changes per unit length of pipe due to the 
effects of gravity on the mass of fluid within the pipe. 

AREA ~ Calculated flow area of the pipe, based on the inlet mass flow 
rate, density, and velocity. 

DIAMETER — Calculated pipe diameter, based on the calculated area. 

LENGTH — Specified length of the pipe. 

GRAV ANGLE — Specified angle the pipe makes with the gravitational 
field. 

4.6.2 Liquid-Metal Nozzle Model 

The liquid-metal nozzle model (MNOZ) requires one pass-through flow of the 
generic type LIQ. The parameters of the MNOZ model are as follows: 

EFFICIENCY — Specified efficiency of the nozzle, defined as the 
change in velocity heads divided by the change in pressure across the 
nozzle. 

EXIT VELOCITY — Specified exit velocity from the nozzle. 

LENGTH — Specified length of the nozzle (used in determining gravita
tional effects on the pressure changes across the nozzle due to the 
mass of fluid within the nozzle). 

GRAV_ANGLE — Specified angle that the nozzle makes with the 
gravitational field. 

4.6.3 Liquid-Metal Diffuser Model 

The liquid-metal diffuser model (MDIF) requires one pass-through flow of the 
generic type LIQ. The parameters of the MDIF model are as follows: 

EXIT VELOCITY - Specified exit flow velocity. 

EFFICIENCY ~ Specified efficiency of the diffuser (defined as diffuser 
pressure rise divided by change in velocity heads). 
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LENGTH ~ Length of the diffuser, used in calculating pressure changes 
due to gravitational effects on the liquid mass. (This pressure change is 
added to that due to the diffuser efficiency.) 

GRAVANGLE — Angle that the diffuser makes with respect to the 
gravitational field (in degrees). At GRAV ANGLE=90, no gravitational 
effects are present. 

4.6.4 Liquid-Metal Magnetohydrodjrnamic-Generator Model 

The two-component liquid-metal MHD-generator model (MMHD) requires two 
pass-through flows of the generic types GAS and LIQ. The first flow represents the 
predominant gaseous component of the two-component flow, while the second represents 
the liquid component. 

The parameters of the MMHD model are as follows: 

EFFICIENCY — Specified isentropic expansion efficiency of the 
generator. 

EXITPRES — Specified exit pressure from the generator. 

SLIPRATIO — Specified ratio of the gas velocity to the liquid velocity 
at the exit of the generator. 

TEMP DIFF — Specified difference between the liquid temperature and 
that of the gas at the exit of the generator. 

LENGTH — Length of the generator (used in calculating the gain or loss 
in energy due to the effects of gravity on the mass of fluid within the 
generator). 

GRAV ANGLE — Specified angle the generator makes with the gravita
tional field. 

VOID_FRACTION - Calculated void fraction at the exit of the 
generator. 

4.7 TWO-COMPONENT LIQUID/GAS SEPARATOR MODEL 

The two-phase, two-component liquid/gas separator model (SEPR) requires two 
pass-through flows and two output flows, all of the generic type GAS. The first pass-
through flow represents the predominant gaseous component, while the second represents 
the liquid component. The first of the output flows represents any gaseous carry-over 
flow that leaves with the liquid pass-through flow. The second output flow represents 
any liquid carry-over flow that leaves the separator with the gaseous pass-through flow. 
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The parameters of the SEPR model are as follows: 

VELOCITYHEADRATIO - Specified rat io of the square of the liquid 
velocity out of the separator to the square of the liquid velocity into 
the separator (used only when the separator is run in the specified 
efficiency mode). 

PRES_DROP(2) — Specified array of pressure drops for the gaseous and 
liquid flows through the separator. 

VOLRATIO — Calculated ratio of the volume flow rate for the gas to 
that for the liquid. 

L I Q C O ~ Specified fraction of the liquid flow ra te carried over with 
the gas flow. 

GASCO — Specified fraction of the gas flow ra te carried over with the 
liquid flow. 

EFFICIENCY — Calculated ratio of the fraction of liquid mass to total 
mass t imes the velocity head rat io. 

VAPOR CO — Calculated mass of liquid carried over with the gas flow 
due to the vaporization of the liquid. This parameter , calculated when 
VAPOR INC is set to "YES." is used only to indicate how much of the 
liquid vapor is carried over. The actual mass is not combined with the 
exiting gas flow or subtracted from the liquid flow. 

VAPORING — Switch used to indicate whether or not liquid vapor 
carry-over is to be calculated. 

HEATREJECTED — Calculated heat that would be lost from the liquid 
if vapor carry-over occurred. 

4.8 TWO-PHASE COMPONENT MODELS 

4.8.1 Two-Phase Mixer Model 

The two-phase, two-component mixer model (TPMX) requires two pass-through 
flows, the first being the gaseous component and the second, the liquid component. The 
parameters of the TPMX model are as follows: 

PRES OUT OPTION — Specified character string defining an option for 
calculation of the exit pressure as a weighted average of the gas and 
liquid inlet pressures. If mix is equal to "MIX," this option is used; 
otherwise, the output flow pressure is taken as the minimum inlet flow 
pressure minus any specified pressure drop. 
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PRES DROP — Specified pressure drop through the mixer. 

DPFRAC ~ Specified fraction of the minimum or weighted average 
inlet pressure, used as an additional pressure drop through the mixer. 

SLIP_RATIO — Specified ratio between the gas and liquid flow 
velocities. 

TEMPDIFF ~ Specified difference between the gas temperature and 
that of the liquid. 

PRES DIFF IN ~ Calculated difference between the gas inlet pressure 
and that of the liquid. 

VOID FRACTION - Calculated void fraction of the exit flow. 

4.8.2 Two-Phase Nozzle Model 

The two-phase, two-component nozzle model (TPNZ) requires two pass-through 
flows of the generic types GAS and LIQ. The first flow represents the gaseous 
component and the second, the liquid component. The parameters of the TPNZ model 
are as follows: 

EFFICIENCY — Specified efficiency of the nozzle, defined as the ratio 
of the actual change in enthalpy across the nozzle to the isentropic 
enthalpy change. 

EXIT PRES — Specified exit pressure from the nozzle. 

SLIPRATIO — Specified ratio of the gas velocity to the liquid velocity 
at the nozzle exit. 

TEMPDIFF — Specified difference in temperature between the liquid 
and the gas at the nozzle exit. 

LENGTH - Specified length of the nozzle. 

GRAVANGLE — Specified angle between the nozzle and the 
gravitational field. 

VOID FRACTION - Calculated void fraction of the flow at the nozzle 
exit. 
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4.8.3 Two-Phase Diffuser Model 

The two-phase, two-component diffuser model (TPDF) requires two pass-through 
flows, the first representing the gaseous-phase component and the second the liquid-
phase component. Both of these flows are of the generic type GAS or LIQ. 

The parameters of the TPDF model are as follows: 

MODE ~ Specified character string taking on the values " " or "SPEC-
EFF." If "SPEC-EFF" is not set, then the efficiency of the diffusion 
process is calculated within the code (based on the void fraction of the 
flow). 

EXIT VELOCITY — Specified exit velocity of the liquid flow. 

SLIPRATIO — Specified ratio of the gas velocity to the liquid velocity. 

EFFICIENCY — Specified efficiency of the diffuser, defined as the 
ratio of change in pressure across the diffuser to the change in velocity 
head across the diffuser. 

LENGTH — Specified length of the diffuser (used in calculating 
additional pressure changes due to gravity). 

GRAV_ANGLE — Specified angle the diffuser makes with the 
gravitational field. 

VOID FRAC IN — Calculated inlet void fraction. 

VOID FRAC OUT — Calculated exit void fraction. 

4.9 SYSTEM MODEL 

The system model (SYST) calculates the total power put in, produced, consumed, 
and lost by the system. The model does not require any flows. 

The parameters of the SYST model are as follows: 

POWERHEADPTR ~ Specified pointer to the linked list of model 
power substructures. 

FLOW HEADPTR — Specified pointer to the linked list of model flow 
substructures. 

NET ~ Calculated net power produced by the system (total power 
produced minus total power consumed). 
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EFFICIENCY — Calculated system efficiency based on total power 
input, net power, and auxiliary power. If total input power is zero. 
EFFICIENCY is also set to zero. 

AUXILIARY ~ Specified value of any auxiliary-power requirements. 
Auxiliary power is subtracted from net power in calculating efficiency. 

UNITS — Character string that indicates SI for output in SI units; 
otherwise, British units are used for output. 
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5 EXAMPLES USING STEADY-STATE MODELS 

Unlike the examples provided in Chapter 1, all examples discussed in this chapter 
conform to the actual models available in the SALT library. The reader may find it 
useful, in going through these examples, to refer to the relevant sections in Chapter 4 to 
review the documentation on ptirticular models. 

5.1 SIMPLE SYSTEM CONFIGURATIONS 

5.1.1 Simple Steam-Flow System 

The first example demonstrates all the inputs necessary to run a very simple 
system configuration. Consider a s team/water flow, heated by a heater (HT) and then 
run through a steam turbine (ST). The system consists of one flow type, STM. and two 
model types. HT and ST; the following PROCESS s ta tement represents this system: 

PROCESS STM_l-> HT_1 ST_1 ->STM_EXT 

A label has been appended to the models and flows to satisfy the requirement that all 
models and flows must have labels. The ST model requires an additional output flow, 
which has been labeled "EXT." As a general rule, all flows in a system configuration 
should originate within a component model. Thus, since the HT model does not generate 
a flow (its only flow is a pass-through flow), an inlet model (IN) is used to generate a flow 
for it. The complete system configuration for this example is then represented by the 
following: 

PROCESS STM_l-> IN_1 HT_1 ST_1 ->STM_gXT 

Before this s ta tement can be executed, the properties procedures must be 
initialized. This is accomplished by the s ta tement 

PROCESS GP_l:IN 

After the component models have been executed, the results of the analysis can be 
printed out by calling all of the output entries of all the models: 

PROCESS NULL-> IN_1:0UT HT_1:0UT ST_1:0UT 

The output entries require no flow arguments. Thus, the last-used pass-through flow 
("STMl") must be nullified; otherwise, it would be passed to the output entries. The 
NULL flow is used to turn off the pass-through flow. This PROCESS statement can be 
written more conveniently as 

PROCESS NULL-> * *:OUT 
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The use of * *:OUT implies that each model used in the system analysis that has an 
":OUT" entry is to be called. The complete system-configuration specification for this 
problem (forming the contents of the SALT input file, STRUCT) is as follows: 

PROCESS GP_l:IN 
PROCESS STM_l-> IN_1 HT_1 ST_1 ->STM_EXT 
PROCESS NULL-> *_*:OUT 

The only other data needed for this problem are the values of the model input 
parameters, which can be specified by the use of the DATA s ta tement . A typical 
example of this statement for this problem would be the following: 

DATA 
IN_1.PARM .ID='H20' ; .T=0; .P=150.; .M=20.; .Q=0.0; 
HT_1.PARM .HEAT=lEe; 
ST_1.PARM .EXIT_PRES=10.; .EFFICIENCY=0.88; 

Here, the parameters for the IN model define the initial steam-flow conditions upstream 
of the HT model. The specification of the temperature as zero (T = 0) implies that the 
flow is saturated or in the two-phase region; the values of the pressure. P. and quality, Q, 
determine the temperature, as well as the other flow properties of enthalpy and 
entropy. The statement HT.PARM.HEAT=1E6 specifies that one megawatt of energy 
will be transferred to the steam flow before entering the ST model; there, the steam 
flow will be expanded to 10 atm at an isentropic efficiency of 88%, as specified by the 
ST model parameters. The other parameters for these models will be taken as their 
default values (defined within the INTF file). In particular, if the ST parameter (SR) is 
defaulted to zero, then no extraction flow will exist; however, this flow must still be 
shown in the PROCESS statement. 

5.1.2 Inclusion of a System Model 

Suppose that the steam flow from the ST model of the previous section is 
condensed in a steam-condenser model (SC) and then pumped back to the inlet pressure in 
a pump (PUMP). The processing of the steam flow from the inlet, IN, through the HT, 
ST, SC, and PUMP models is represented as follows: 

PROCESS STM_l-> IN_1 HT_1 ST_1 ->STM_EXT SC_1 PUMP_1 

The SC and PUMP models were simply added to the end of the PROCESS s ta tement . The 
flow passing through these models is that of S T M l and not STMEXT, because the last 
pass-through flow is that of STM 1. 

Suppose that in addition to the component powers generated by the ST, consumed 
by the PUMP, and rejected (as heat) from the system by the SC. the net power is also 
desired. The net power could be calculated by using the PLI key word and coding the 
appropriate PL/I statements (with reference to the model POWER substructures). 
However, the net power can be more easily determined using the SYST model. This 
model does not require any flows, so it should be specified after the STM 1 pass-through 
flow has been nullified. 
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follows: 
The entire input specified in the STRUCT file for this problem would be as 

PROCESS GP_l:IN 
PROCESS STM_l-> I N I HT_1 ST_1 
PROCESS NULL-> SYST 1 * *;OUT 

->STM EXT SC 1 PUMP 1 

In this case, the additional model input parameters for the SC, PUMP, and SYST 
models must be specified along with the other model parameters in the DATA 
statement . No input parameters are required for the SC model. For the PUMP, the 
EXITPRES and EFFICIENCY parameters must be specified. Because the SYST model 
processes the substructures of all the models, the head pointers of the linked list of such 
substructures need to be assigned to the SYST parameters of POWERHEADPTR and 
FLOW HEAD PTR. The names of these head pointers are defined within the INTF file; at 
present, they are the same as the SYST parameter names themselves. Thus, the 
following would be added to the DATA s ta tement of the system considered in Sec. 5.1.1: 

PUMP_1.PARM .EXIT_PRES=250.; .EFFICIENCY=0.72; 
SYST_1. PARM . POWER_HEAD_PTR=POWER_HEAD_PTR; 

.FLOW HEAD PTR=FLOW HEAD PTR; 

5.1.3 Inclusion of a Demand Model Constraint 

Figure 12 depicts a system consisting of a water /s team flow (LIQ) that is run 
through a heater (HT) and then through a steam drum (SD). The generated steam flow 
from the drum is processed by a steam turbine (ST), a condenser (SC), a water pump 
(PUMP), and a mixer (MX), where it is mixed with the downcomer flow (LIQ) from the SD 
model. 
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HT 
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MX 
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STM 
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FIGURE 12 Simple Steam-Plant System 
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This system configuration is easily represented by the following PROCESS 
statement, using the general rules for representing pass-through, input, and output flows: 

PROCESS LIQ_l-> IN_LIQ HT_1 
SD _1 ->STM_1 

STM_l-> ST_1 ->STM_EXT SC_1 PUMP_1 
LIQ_l-> MX_1 <-STM_l 

Here, the model INLIQ has been added to initiate the LIQ 1 flow. Also, although it is 
not shown in Fig. 12, the extraction flow from the ST model has been included in the 
PROCESS statement. 

To complete the inputs for this example, the properties procedures should be 
initialized, the SYST model may be added, and the outputs may be printed by use of the 
* *:OUT. The complete system configuration specified in the STRUCT file would be as 
follows: 

SC 1 PUMP 1 

As was indicated in Chapter 3, some models are of a demand type and require 
specific constraints to be added to the SALT input. The SD model is of such a type; it 
requires a specified input flow quality in order to work properly. This specified quality is 
a constraint that may be met in many different ways. In the system discussed in Sees. 
5.1.1 and 5.1.2, for example, the heat load in the heater might be varied until the correct 
steam quality is reached, or (for a fixed heater load) the input steam-flow ra te might be 
varied. In either case, a suitable VARY statement would be needed. In order to obtain 
the correct inlet steam-drum quality corresponding to the required steam-drum quality, 
the SD model sets the value of the SD parameter (CONS) equal to the inlet enthalpy 
minus the value required. Thus, S D l . C O N S must be constrained to equal zero within 
some subsystem. Assuming that the heater load will be varied to meet this constraint, a 
simple subsystem can be set up over the HT and SD models using the SYSBEG and 
SYSEND delimiters. The entire input would look like the following: 

PROCESS 
PROCESS 

GP 1:IN 
LIQ_l-> 

STM l-> 
LIQ l-> 
NULL-> 

IN LIQ HT 1 
SD 1 ->STM 1 
ST 1 ->STM EXT 
MX 1 <-STM 1 
SYST 1 * *:OUT 

PROCESS GP 1:IN 
LIQ l-> 

SYSBEG A 
VARY HT l.HEAT 
CONS SD l.CONS 
PROCESS LIQ 1-

SYSEND A 
PROCESS STM_l-> 

LIQ l-> 
NULL-> 

IN_LIQ 

= * lEl 20Ee 
= 0.0 
•> HT_1 SD 1 ->S' 

ST 1 ->STM EXT 
SC 1 PUMP 1 
MX 1 <-STM 1 
SYST 1 * *:OUT 

DATA 
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Here, the VARY statement instructs SALT to vary the HT parameter HEAT between 
10 W and 1 MW until the constraint on the steam-drum parameter, CONS, is 
established. The "*" used in the VARY s ta tement tells the SALT systems code to start 
its iterations with the current value of HT l.HEAT; this value would be either its default 
value or the value specified in the DATA s ta tement . 

The information in the DATA sta tement should reflect the model parameters for 
the I N L I Q , HT, SD, ST, SC, WP, and MX models. The MX does not require any 
parameters, and the SD requires only the specified inlet steam quality (QUAL), for which 
0.2 would be a typical value. The other models can use the same DATA statement as was 
presented in S e c 5.1.2. 

5.1.4 Inclusion of User-Imposed Constraints 

In Sec. 5.1.3, a constraint was added to accommodate the requirements of a 
demand model. Such constraints must be added to the system in order that such models 
work properly. However, additional constraints may be added to represent various user-
imposed system requirements. These constraints may be added, as additional VARY and 
CONSTRAIN sta tements , to the subsystems used to establish the demand model 
constraints (provided, of course, that the parameters varied and the constraints both lie 
within those subsystems). Alternatively, user-imposed constraints may be established by 
setting up additional subsystems using additional SYSBEG and SYSEND statements . In 
general, any number of such subsystems can be set up to establish other system 
constraints. A given subsystem may even contain other subsystems. 

Suppose that , besides the constraint on steam-drum quality, a constraint on the 
total power output is required: 

SYST_1.S POWER.PRODUCED=10E6 
% 

To satisfy this constraint, the inlet mass flow ra te (LIQ) will be varied. This is easily 
represented as follows: 

PROCESS GP_1:IN 
SYSBEG A 

PROCESS LIQ_l-> IN_LIQ HT_1 
SD _1 ->STM_1 

STM_l-> ST_1 ->STM_EXT SC_1 WP_1 
LIQ_l-> MX_1 <-STM_l 
NULL-> SYST_1 

VARY IN_LIQ.PARM.M= * 10 100 
; HT_1.PARM.HEAT= * lEl 20Ee 

CONS SYSTl.SPOWER.PRODUCED=10E6 
; SD_1.CONS=0.0 

SYSEND A 
PROCESS NULL-> *_*:OUT 
DATA . 
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Here, the constraint on the system power was simply added to the subsystem 
used to establish the SD demand constraint by enlarging that subsystem from the IN LIQ 
model down to the SYST 1 model. The IN LIQ model was included within the subsystem, 
because one of its parameters is varied within the subsystem. The SYST 1 model was 
included within this subsystem so that the system power produced would be calculated at 
each iteration. The call to * *:OUT is placed outside of the subsystem loop; otherwise, 
output would be produced for every iteration. 

The same system problem can also be handled by the use of two nested 
subsystems, as follows: 

PROCESS GP_1:IN 
SYSBEG B 
VARY INLIQ.PARM.M = * 10 100 
CONS SYST_1.SPOWER.PRODUCED = lOEe 
PROCESS LIQ_l-> IN_LIQ 
SYSBEG A 
VARY HT_1.PARM.HEAT = * lEl 20E6 
CONS SDl.CONS = 0.0 
PROCESS LIQ_l-> HT_1 SD_1 ->STM_1 

SYSEND A 
SC 1 PUMP 1 PROCESS 

SYSEND B 

STM l-> 
LIQ l-> 
NULL-> 

PROCESS NULL-> * * 
DATA 

ST 1 
MX 1 
SYST_ 

:OUT 

->STM 
<-STM" 
1 

EXT 
'_1 

In this case, the iterations within the inner subsystem (labelled A) to establish the steam-
drum constraint will be performed for each iteration of the outer subsystem to establish 
the system power constraint. 

In a problem such as this, when the MINIMIZE statement (see Sec. 5.1.5, below) 
has not been specified, the number of constraints must equal the number of variables 
included in the VARY statements. Otherwise, the problem will be either overdetermined 
or underdetermined. Such equality-constrained problems make use of an n-dimensional 
hybrid equation solver. This equation solver is reasonably robust, but (depending on the 
problem) it may fail occasionally. If a failure occurs, it might be possible to decompose 
the problem into nested sets of smaller-dimensional problems or to try a new initial guess 
to find a solution. Sometimes, some of the algorithm's controlling parameters need to be 
adjusted. These controlling parameters may be assigned values by the use of the SWITCH 
statement. Like the VARY and CONSTRAIN statements, the SWITCH statement should 
lie between the SYSBEG and SYSEND statements to which it refers. A typical example 
might be the following: 

SWITCH MAXIT=50 DEL=lE-4 ACC=lE-2 
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where MAXIT is the maximum number of iterations that will be used to perform the task 
within the subsystem, and DEL represents a measure of how the variables within the 
subsystem will be perturbed in determining the gradients of the constraints. A DEL of 
lE-4 means each variable will be perturbed by a factor of 10" t imes the value of the 
variable. The value of DEL should be made as small as possible to represent the 
gradients accurately, but not so small that round-off error hinders the calculations. ACC 
is the termination criterion. Whenever the sum of the squares of the constraint 
violations is less than ACC, the iterations are terminated. The equation solver will 
a t tempt to scale the variables and constraints internally, so all constraints will usually 
converge to zero uniformly. 

5.1.5 Inclusion of an Optimization Problem 

Suppose that , rather than constraining the plant power produced, the maximum 
plant power is to be obtained as a function of the inlet steam pressure. The MINIMIZE 
statement may be used to set up this problem as follows: 

PROCESS GP_1;IN 
SYSBEG A 

PROCESS L I Q _ 1 - > I N _ L I Q HT_1 
SD _1 ->STM_l 

STM l-> ST_1 ->STM_EXT SC_1 PUMPl 
LIQ~l-> MX_1 <-STM_l 
NULL-> SYST_1 

VARY IN_LIQ.PARM.P = * 100 200 
; HT_1.PARM.HEAT= * lEl 20E6 

CONS SD_1.CONS=0.0 
MINIMIZE -SYSTl.SPOWER.PRODUCED 

SYSEND A 
PROCESS NULL-> *_*:OUT 
DATA . % 

When the MINIMIZE s ta tement is used, the number of variables in the VARY statement 
should exceed the number of equality constraints; inequality constraints also may be 
included. For instance, if an upper limit of 600 K on the heater exit temperature is 
required, the constraint would be stated as follows: 

CONS HT_1.FLC.TEMP<600 

It is permit ted to have more inequality constraints than variables when the MINIMIZE 
statement is used. 

Optimization problems are inherently more difficult to solve than pure-equality-
constrained problems. The algorithm that is used in solving these nonlinearly constrained 
optimization problems is that of M.J.D. PoweU.^" For the algorithm to work at its best, 
the constraints and the objective function, as defined by the MINIMIZE statement , should 
be continuously differentiable functions. As with the equation solver, failure may occur 
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when attempting some problems. Again, variation of the initial guesses, decomposition 
of the problem, or variation of the optimizer parameters could resolve the problem. The 
same parameters — ACC, MAXIT, DEL, and PRINT — are available for the optimizer as 
for the equation solver and have roughly the same meanings. Now, however, the 
iterations terminate when the gradient of the objective function plus the sum of the 
absolute values of the Lagrangian multipliers times the constraint violations is less than 
ACC. In decomposing such a problem, inner iterative loops that are pure-equality-
constrained problems may be set up. (There is no restriction against using both equation-
solver and optimizer loops in the same problem.) 

Another difficulty associated with optimization problems is that only local 
minimums may be found. No good techniques currently exist for finding the global 
minimum of a general nonlinear problem. Where such a situation is suspected, parameter 
sweeps might be necessary to confirm the results of the optimization. 

5.1.6 Inclusion of a Parameter Sweep 

As was indicated in Sec. 5.1.5, parameter sweeps can be a bet ter al ternative than 
optimizations, at least when the problem dimension is small. Consider again the system 
discussed in Sec. 5.1.3. Suppose it is desired to determine the output power (in fact, all 
output parameters) as a function of the inlet liquid pressure as it is swept over 100 to 200 
atm (in increments of 10 atm). This task is symbolized using the following SWEEP 
statement: 

SWEEP INLIQ.P = 100 TO 200 BY 10 

This statement would be included within its own separate subsystem as follows: 

PROCESS GP_1:IN 
SYSBEG B 

SWEEP IN_LIQ.P = 100 TO 200 BY 10 
PROCESS LIQ_l-> IN_LIQ 
SYSBEG A 

VARY HT_1.PARM.HEAT = * lEl 20E6 
CONS SDl.CONS = 0 . 0 
PROCESS LIQ_l-> HT_1 SD 1 ->STM 1 

SYSEND A 
PROCESS STM_l-> ST_1 ->STM_EXT SC_1 PUMP 1 

LIQ_l-> MX_1 <-STM_l 
NULL-> SYST_1 * *:OUT 

SYSEND B 
DATA 

In this case, the PROCESS NULL-> *_*:OUT is placed within the SYSBEG-
SYSEND subsystem delimiters, so the output is produced for each value of the inlet liquid 
pressure. 
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5.1.7 Inclusion of a Feedback Loop 

In Sec. 5.1.3, the liquid flow entered and then left the system but did not form a 
closed loop. Many systems do include closed loops. We now consider a system in which 
an additional pump has been added after the mixer and in which the liquid flow closes 
upon itself (see Fig. 13). 

No real starting point for the liquid flow exists in such a system, so one is 
created artificially by tearing the flow path at some point and using the initiator model. 
The inlet conditions (flow conditions out of the initiator) are then varied until they match 
those out of the last model at the point of the tear. For example, if one tears the flow 
between the pump and the heater model and includes an initiator model at that point, the 
PROCESS statement for the configuration may be written as follows: 

PROCESS LIQ_l-> 
STM_l-> 
LIQ l-> 

IN_LIQ HT_1 SD_1 ->STM_1 
ST_1 ->STM_EXT SC_1 PUMP_1 
MX 1 <-STM 1 PUMP 2 

One now needs to examine the flow conditions out of the PUMP_2 model and ask 
what conditions at the INLIQ model must be varied in order to make these two flows 
equal. Since all of the flow mass leaving the IN LIQ model eventually leaves the PUMP 2 
model, the mass flow rates are the same for any inlet flow rate. The exit pressure from 
the PUMP_2 is an assigned input value to that model, so assigning that same value to the 
INLIQ.P parameter will make the pressures match for the two flows. The only other 
condition to be matched is temperature. The temperature out of the pump is not known; 
thus, to establish equality of temperature between the outlet flow of the pump and the 
IN LIQ flow, one could vary the IN LIQ flow temperature as follows: 

VARY IN_LIQ.T = 400 300 500 

until the following condition is met: * 

CONS PUMP 2.FLC.TEMP = INLIQ.T 
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FIGURE 13 Simple Steam-Plant System with Feedback Loop 
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Then the system inputs would look like this: 

PROCESS GPl:IN 
SYSBEG A 

VARY INLIQ.T = * 300 500 
CONS PUMP_2.FLC.TEMP = IN_LIQ.T 
PROCESS LIQ_l-> IN_LIQ HT_1 SD_1 ->STM_1 

STM_l-> ST_1 ->STM_EXT SC_1 PUMP_1 
LIQ_l-> MX_1 <-STM_l PUMP_2 

SYSEND A 
PROCESS NULL-> SYSTl *_*:OUT 
DATA . 

The DATA statement is similar to that used in Sec. 5.1.3, but now it is important 
to set the IN LIQ.P parameter equal to the value assigned to PUMP 2.EXIT PRES. 

The point at which a flow stream is torn in order to close a feedback loop can 
affect which variables need to be varied to close the loop. By choosing the tearing point 
after the pump in the above example, one could match the pressures without any VARY-
CONS statements. Similarly, by choosing this point as the tearing point, the flow is (for 
sufficiently high pump pressure) subcooled, and it is possible to vary the temperature. 
For other recycle loops, if it is not known beforehand whether or not a two-phase region 
might be entered, the enthalpy rather then the temperature should be varied. (The inlet 
parameter PARM.T would be set to zero and the parameter PARM.Q, representing the 
flow quality, would be varied. Subcooling and superheating are represented by varying Q 
below 0.0 and above 1.0.) 

In order to more clearly represent the recycle loops using the PROCESS 
statement, an additional entry to the IN model may be called to represent the "back 
door" to the model. This entry, denoted "CYCL," also calculates the difference between 
the flow entering this entry and that originating from the IN model. This difference is 
stored in the variables DT, DP, DH, DM, and DV, representing the difference in 
temperature, pressure, enthalpy, mass, and velocity, respectively. In the above problem, 
for example, if the model entry IN_LIQ:CYCL had been specified in the PROCESS 
statement after the PUMP_2 model, then the VARY and CONS statements could have 
been written as follows: 

VARY INLIQ.T = 400 300 500 
CONS IN_LIQ.DT = 0.0 

This form displays a greater degree of symmetry in defining the loop closure. 

As was true for the demand-type model constraints, the constraints needed to 
close a recycle loop must be included to represent a system accurately. In general, there 
may be many loops — and many ways to close such loops — in a complex system. The 
closure also depends on the variables within the flow itself. Thus, in recycle gas flows, it 
may also be necessary to close on species concentrations, in addition to pressure, 
temperature, and mass flow rate. 
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5.2 SUMMARY OF THE INPUT-FORMATION PROCESS 

The general process by which the inputs for a system problem are formed usually 
entails the following stages: 

1. For the given system configuration, appropriately label the models 
and flows (consistent with each model's requirements as to pass-
through, input, and output flows). 

2. Formulate the PROCESS statement for the system, tearing flows 
for recycle loops and inserting appropriate flow initiators as 
necessau-y. 

3. Consider any demand-type models included in the system and 
decide how their demand constraints will be satisfied (i.e., choose 
the parameters to be varied). 

4. Decide on each recycle loop and how it will be closed. (Loop 
closure sometimes depends on model demand constraints, and these 
constraints sometimes depend on closure.) 

5. Add any additional constraints and their establishing parameters 
that may be needed to define system requirements (i.e., user-
defined constraints). 

6. Work out the subsystem breakdown for implementing all of the 
constraints. This, of course, may be accomplished while one is 
adding the constraints and their establishing parameters. (One 
choice of a subsystem breakdown is simply to include all 
constraints in one subsystem, which is the entire system.) 

7. Add any calls to the property-initialization procedures, system 
models, output entries, and the DATA statement. 

As the system configuration becomes more complicated, it can become difficult 
to obtain a reasonable set of starting values for all the VARY parameters. It may then 
be useful to formulate only the PROCESS and DATA statements and to run the analysis 
without any constraints. The resulting output can be used to determine what parametric 
values should be used as constraints are added. The output may also reveal a conceptual 
error made while setting up the system configuration; finding the error at this point 
saves computer time that would have been lost in performing iterations on an incorrect 
system specification. 

5.3 ANALYSIS OF POWER-PLANT SYSTEMS 

Several more detailed examples will now be given. These examples consist of a 
conventional fossil/steam power plant, an open-cycle MHD plant, a solid-oxide fuel-cell 
plant, and a liquid-metal MHD plant. 
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5.3.1 Fossil/Steam Power Plant 

Figure 14 shows a simple fossil/steam power plant that employs air preheating, 
steam superheating, and reheating; the plant is equipped with six steam-turbine models 
(to account for all extraction points) and four feedwater heaters. With the models and 
flows labeled as shown in the figure, we can write the PROCESS s ta tement . (By starting 
the steam flow before the steam drum, there is only one recycle loop.) Starting with the 
steam flow, the PROCESS statement would be as follows: 

PROCESS 
LIQ_l-> IN_H20 SD_1 ->STM_1 
STM_l-> HX_SH:C ST_HP1 ->STM_HP1 

ST_HP2 ->STM_HP2 
HX_RH:C ST_IP ->STM_IP 
ST_LP1 ->STM_LP1 
ST_LP2 ->STM_LP2 ST_LP3 ->STM_DUM 
SC_1 

STM_HPl-> FH_HP1:H <-STM_DUM 
STM_HP2-> FH_HP2:H <-STM_HPl 
STM_LPl-> FH_LP1:H <-STM_HP2 
STM_LP2-> FH_LP2:H <-STM_LPl 
STM_l-> MX_SC <-STM_LP2 

PUMP_SC HX_ECON:C FH_LP2:C FH_LP1:C 
DEAR_1 <-STM_IP 
PUMP_FW FH_HP2:C FH_HP1:C 

LIQ_l-> MX_FW <-STM_l 
PUMPBFP HX_BOIL:C IN_H20:CYCL 

We Start with the liquid-water (actually two-phase) flow into the SD 1 model and 
then follow the STM 1 flow from the S D l model through the turbine train to the exit of 
the S C I model. At this point, it becomes necessary to mix this S T M l flow with 
another, as yet unknown, flow. However, it is possible to go to the hot entry of the first 
high-pressure feedwater heater (FH HPl) and continue processing the flows through the 
hot entries of each feedwater heater. The second flow of each of these feedwater 
entries is the cascaded flow from the previous high-pressure heater. The first high-
pressure heater, not having such a cascaded flow, is fed a dummy steam flow. This 
dummy flow must be created like any other flow, even though its mass flow ra te will be 
set to zero. The last turbine stage does not have any extraction flow (STM DUM leads 
nowhere), so this flow may also be used for this first high-pressure feedwater flow. If 
the lower-pressure turbine stage had made use of this extraction flow, then a flow 
initiator would have been required to generate the STM DUM flow. 

By calling these hot-side feedwater-heater entries, the flow from the steam 
condenser (STMl) can now be mixed with a known flow (STM LP2). The S T M l flow can 
then be processed through the pumps, cold-side entries to the feedwater heaters , and 
deaerator and finally mixed with the downcomer flow (LIQ 1) from the S D l model. This 
L I Q l flow is then followed through the boiler feed pump and the boiler and back to the 
liquid-flow initiator. 
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The PROCESS statements for the AIR 1 and GAS 1 flows are easily developed as 
follows: 

PROCESS 
AIR_l-> INAIR CP_AIR HX_AIR:C 
FUEL_l-> INF_COAL DRY_1 CB_1 <-AIR_l ->GAS_1 
GAS_l-> HX_BOIL:H HX_SH:H HX_RH:H 

HX_AIR:H HX_ECON:H DRY_1:H SKI 

With the PROCESS statement for this plant now completely defined, it remains 
to add any necessary subsystem constraints to satisfy demand-type models and close any 
loops. If the plant is being analyzed in a design mode, then the demand models are SD 1 
(which requires a specific inlet steam quality) and DEAR 1 (which requires a saturated 
exit flow). If the LIQl flow were started before the S D l model, the required steam-
drum constraint could be satisfied simply by starting the flow with the appropriate steam 
quality. One of the options with the IN model is to set the initiator temperature 
(IN.H20.T) to zero and to specify the initiator quality (IN_H20.Q). This quality, along 
with the pressure (IN_H20.P), will then define the thermodynamic conditions of the 
initiated flow. Thus, the SD constraint can be satisfied by setting the two parameters 
SD.l.STEAM QUAL and IN H20.Q to the same value. 

The deaerator constraint can be satisfied in several ways, the easiest of which is 
simply to vary the STJP extraction flow rate until the exit flow from the deaerator is at 
saturation conditions. This condition is satisfied when the parameter DEARl.QUAL is 
equal to zero. Thus, this model demand constraint can be established using the following 
statements: 

VARY ST_IP.SR = * 0.01 0.20 
CONS DEAR_1.PARM.QUAL=0.0 

Only enthalpy and pressure need to be matched to satisfy the single recycle 
loop. The mass flow, even though it is split and mixed in many places, eventually ends up 
being the same at the IN_H20:CYCL entry as when it started at the IN H20 entry. The 
enthalpy closure cannot be satisfied by varying the IN_H20 enthalpy, because this value 
is determined by specifying (IN H20.Q) to satisfy the S D l demand constraint. The heat 
load on the HXBOIL, however, can be varied. The following two statements will close 
the enthalpy. 

VARY HX_BOIL.HEAT = * lEl 25Ee 
CONS IN_H20,DH =0.0 

The pressure can be closed either by varying the IN H20.P (which will cause the steam-
drum, and hence turbine-inlet, pressures to vary) or by varying the 
PUMP.BFP.EXIT.PRES. This latter variation may be more appropriate, because the 
drum pressure is usually a design characteristic of steam plants. The following 
statements will close the pressure within the loop: 

VARY PUMP_BFP.EXIT_PRES = * 100 200 
CONS IN H20.DP = 0.0 
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All three sets of VARY-CONS statements must be placed within a subsystem 
encompassing the entire water/steam flow path. Thus, the complete input (excluding the 
DATA statement) would be as follows: 

PROCESS GP_1:IN 

SYSBEG A 

PROCESS 
LIQ_l-> 
STM l-> 

IN_H20 SD_1 ->STM_1 
HX_SH:C ST_HP1 ->STM_HP1 
ST_HP2 ->STM_HP2 
HX_RH:C ST_IP ->STM_IP 
ST_LP1 ->STM_LP1 
ST LP2 ->STM LP2 ST LP3 ->STM DUM 

STM HPl-
STM HP2-
STM LPl-
STM LP2-
STM_l-> 

LIQ_l-> 

-> 
-> 
-> 
•> 

SC 1 
FH HP1:H <-STM DUM 
FH HP2:H <-STM HPl 
FH LP1:H <-STM HP2 
FH LP2:H <-STM LPl 
MX SC <-STM LP2 
PUMP SC HX ECON:C 
DEAR 1 <-STM IP 
PUMP FW FH HP2:C 
MX FW <-STM 1 
PUMP BFP HX BOIL:C 

FH LP2:C FH LP1:C 

FH HP1:C 

IN H20:CYCL 

VARY HX_BOIL.HEAT = * lEl 25E6 
CONS IN_H20.DH =0.0 
VARY PUMP_BFP.EXIT_PRES = * 100 200 
CONS IN_H20.DP =0.0 
VARY STIP.SR = * 0.01 0.20 
CONS DEARl.CONS =0.0 % 

SYSEND A 

PROCESS 
AIR_l-> IN_AIR CP_AIR HX_AIR:C 
FUEL_l-> INF_COAL DRY_1 CB_1 <-AIR_l ->GAS_1 
GAS_l-> HX_BOIL:H HX_SH:H HX_RH:H 

HX_AIR:H HX_ECON:H DRY_1:H SK_1 
NULL-> SYST 1 * *:OUT 

(The models GP, SYST, and all the model "*_*:OUT" entries were also added to the 
PROCESS statements.) 

The various model input parameters must be defined using the DATA statement; 
this can be the most time-consuming aspect of setting up the SALT input. Of course, 
most of these parameters have default values, and these values may be sufficient; many 
of the parameters may later be varied by adding constraints to the system. In any case, 
some set of values is required for each of the model input parameters. 
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A typical set of parameters for the two IN models might be as follows: 

IN_AIR.PARM .ID='GAS'; .T=298.15; .P=1.0; .M=14.0; 
.XN2=0.78; .XO2=0.22; .XH2O=0.01; 

IN_H20.PARM .ID='H20'; .T=0.0; .P=180.0; .M=75.0; 
.Q=0.20; 

Here, for the AIR flow initiator, the flow ID was defined as "GAS," which implies that 
the GAS properties procedure is to be used to define the thermodynamic behavior of this 
flow throughout the system. When ID is equal to GAS, one must define the flow's 
constituents in terms of its molar fractions by species. In this case, we took the AIR 
flow to be 78% nitrogen, 21% oxygen, and 1% water vapor. (If desired, argon and carbon 
dioxide could also have been included.) For the steam/water flow (specifying the ID as 
"H20"), the water properties code will be used to define the thermodynamic behavior. 
The temperature, pressure, and mass flow rate must also be specified for both flows. For 
the steam/water flow, the condition T = 0 implies that the flow is saturated, and its 
temperature will be calculated using the specified pressure. In this case, the flow's 
quality must be set in order to define the thermodynamic state of the flow uniquely. 
This quality is to be the same as that of the drums; thus, for the steam-drum model, the 
following must also be specified: 

SD_1.PARM .STEAM_QUAL=0.20; 

For the INF model initiating the fuel flow, the parameters for a typical coal 
might be 

INF_COAL.PARM .M=2.0; .0=0.5213; .H=0.0e0; .0=0.3152; 
.N=0.0079; .S=0.0085; .H2O=0.227; 
.ASH=0.0871; .HHV=20.743Ee; 

while for the other components in the AIR and GAS flow paths, a typical set of 
parameters might be 

CP_AIR.PARM .EXIT_PRES=1.15; .EFFICIENCY=0.88; 
CB_1.PARM .ASH_DET=0.0; 
HX_BOIL.PARM .HEAT=12Ee; 
HX_SH.PARM .T_SET(2)=811; 
HX_RH.PARM .T_SET(2)=811; 
HXAIR.PARM .T_SET(2)=500; 
HX_ECON.PARM .HEAT=1E5; 
DRYl.PARM .H2O_DET=0.05; 

Many other parameters exist for these models; failure to specify them implies that their 
default values will be used. For the HX models, these default values will be used to 
determine heat-transfer surface areas, so these outputs may not be accurate in this 
example. On the other hand, the results for a simple heat and mass balance will not be 
affected. The T SET parameter was used for three of the HX models to define the outlet 
temperature of the cold flow. This parameter should be used carefully, because the 
T.SET element (1 or 2) must correspond to the entry ("H" or "C") that is used first in the 
configuration. 
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For the turb ine / f eedwater train, a typica l s e t of inputs might be: 

ST_HP1.PARM .EXIT_PRES=100.; .EFFICIENCY=0.84; . S R = 0 . 1 0 ; 
ST_HP2.PARM .EXIT_PRES=50.; .EFFICIENCY=0.84; . S R = 0 . 1 0 ; 
ST_IP.PARM .EXIT_PRES=15.; .EFFICIENCY=0.8e; . S R = 0 . 0 7 ; 
ST_LP1.PARM .EXIT_PRES=5.; .EFFICIENCY=0.87; . S R = 0 . 0 5 ; 
ST_LP2.PARM .EXIT_PRES=1.; .EFFICIENCY=0.87; . S R = 0 , 0 5 ; 
ST_LP3.PARM .EXIT_PRES=0.0e6; .EFFICIENCY=0.87; . S R = 0 . 0 ; 
SC_1.PARM .EXIT_PRES=0.066; 
PUMP_SC.PARM .EXIT_PRES=15.0; .EFFICIENCY=0.90; 
PUMP_FW.PARM .EXIT_PRES=180.0; ,EFFICIENCY=0.90; 
PUMPBFP.PARM .EXIT_PRES=190.0; .EFFICIENCY=0.90; 

Here, all parameters for the f e e d w a t e r hea ter s were taken a t their default va lues . For 
three of the model parameters — H X B O I L . H E A T , PUMP BFP.EXIT PRES, and ST IP.SR 
— the values ass igned in the DATA s t a t e m e n t wil l be used only as initial guesses in the 
VARY s t a t e m e n t s . The parametr i c va lues ass igned must l ie within the lower and upper 
bounds used in the VARY s t a t e m e n t s . 

This c o m p l e t e s all the input neces sary to do a s y s t e m run for this problem. 
However, additional user- imposed constra ints ( those that cannot be met s imply by se t t ing 
values of the model input parameters ) may be added to the s y s t e m before the run is 
made. For ins tance , it might be des ired to d e t e r m i n e the inlet l iquid/s team mass flow 
rate to the drum such that the gas t e m p e r a t u r e from the boiler is 1650 K. This 
constraint would be accompl i shed by adding 

VARY IN_H20.M = * 1 50 
CONS HX_BOIL.FLH.TEMP = 1650 

to the appropriate subsys tem, which could be an additional subsystem encompass ing the 
original one around the s t e a m / w a t e r path and including tjie f low paths of AIR, FUEL, and 
GAS (at l eas t , down through the boi ler model) . A l t ernat ive ly , these s t a t e m e n t s could be 
included in the original subsys tem to sa t i s fy the model demand constraints and r e c y c l e 
loop constraint by enlarging that subsys tem to include the additional AIR, FUEL, and 
GAS paths. 

Appendix D shows the ent i re SALT input for this problem, as wel l as the result ing 
outputs. All of the outputs , o ther than those g e n e r a t e d by the m a t h e m a t i c a l ut i l i t ies 
( i .e . , equation so lvers and opt imizers ) , are ac tua l ly g e n e r a t e d by the models t h e m s e l v e s . 
Thus, if the outputs are unsat i s fac tory , the user need only change the models , not the 
SALT code . Some a t t e m p t has been made to k e e p the model outputs reasonably similar 
in appearance , al though dif fer ing amounts of output data are genera ted by dif ferent 
models. Usually, only the model parameters are printed out for e a c h model output entry; 
the f lows are printed out by the SYST model's output entry. Because the f low tables , 
power summary tab le , e t c . are printed by the SYST model , i t is bes t not to have other 
models appear a f ter that model in the SALT input. The model output entr ies are ca l l ed 
in the order of their appearance within the PROCESS s t a t e m e n t s . Because SYST uses 
the substructures of the o ther models in ca l cu la t ing power , any model with a POWER 
substructure should c o m e before the SYST model . 
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The table of output by flows printed by the SYST model actually will be the 
values of the flows saved in the models' substructures of FLH, FLC, etc. These values 
usually represent the exit flow conditions, except where the flow is an input flow to the 
model. For example, the second flow to the MX model (as printed out in the flow-table 
summary) would be the input to that model and would usually be the last model using that 
flow. 

Two other types of output are generated by the SALT code. The first is the 
output generated by the mathematical procedures, and the second is a summary of the 
success or failure of such procedures. The first type of data, generated while the code is 
attempting to complete the subsystem task, is printed before the model output entries 
are called (unless such entries are specified within the subsystem loop). 

Varying amounts of information may be generated, depending on the value of the 
PRINT switch specified in the SWITCH statement. If PRINT is equal to zero, no output 
is generated. If PRINT is equal to one, the output generated consists of the name of the 
subsystem; the iteration number being performed (denoted "N="); the objective function 
or the sum of the squares of the constraint violations, depending on whether or not the 
problem is an optimization (denoted "F="); the values of the independent variables — i.e., 
the VARY parameters (denoted as "X="); and the values of the constraint violations 
(denoted "C="). In an optimization, the constraints are reordered from their order of 
appearance within the SALT input so that the equality constraints appear first, followed 
by any inequality constraints. 

For larger values of PRINT, additional output will be generated to help identify 
convergence problems. This additional output (to be discussed later) requires some 
familiarity with the mathematical procedures. 

The success/failure data are used to summarize the final iteration of all 
subsystems. This information, which is printed whenever the system problem calls the 
equation solver or optimizer (regardless of the value of the PRINT switch), is always the 
last output generated by the SALT code. The data include the subsystem name and a 
statement of the type of termination (normal or otherwise), the final objective-function 
value or the sum of the squares of the constraint violations, the variable values and their 
names, the constraint violations, and the constraints themselves. 

5.3.2 Open-Cycle Magnetohydrodynamic Power Plant 

Figure 15 shows a simple open-cycle MHD plant; the system configuration is 
basically the same as that shown in Fig. 14, but with the addition of an MHD topping 
cycle consisting of a nozzle (NZ). an MHD channel (MG). and a diffuser (DF). In order to 
provide a sufficiently high combustion temperature, the inlet air flow has been mixed 
with an additional oxygen flow before being preheated and compressed. The compression 
(to 6 atm) is necessary for the MHD channel's operation. By tracing through the AIR, 
FUEL. GAS. and STM flows, one may write the PROCESS statement for the configura
tion as follows: 
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PROCESS 
GAS_02-> 
AIR_l-> 
FUEL_l-> 
GAS_l-> 

LIQ_l-> 
STM l-> 

STM_HPl-> 
STM_HP2-> 
STM_LPl-> 
STM_LP2-> 
STM l-> 

72 

IN_02 
INAIR MX_02 <-GAS_02 
INFCOAL DRY_1:C CB_1 
NZ 1 MG l:H DF 1 

CPAIR HX_AIR:C 
<-AIR 1 ->GAS 1 

LIQ_1-

IN_H20 SD_1 ->STM_1 
HX_SH:C ST_HP1 ->STM_HP1 
ST_HP2 ->STM_HP2 
HX_RH:C ST_IP ->STM_IP 
ST_LP1 ->STM_LP1 
ST_LP2 ->STM_LP2 ST_LP3 ->STM_DUM 
SC_1 
FH_HP1:H <-STM_DUM 
FH_HP2:H <-STM_HPl 
FH_LP1:H <-STM_HP2 
FH_LP2:H <-STM_LPl 
MX_SC <-STM_LP2 
PUMP_SC HX_ECON:C FH_LP2:C FH_LP1:C 
DEAR_1 <-STM_IP 
PUMP_FW FH_HP2:C FH_HP1:C 
MX_FW <-STM_l 
PUMP BFP HX BOIL:C IN H20:CYCL 

GAS_L-> HX_BOIL:H HX_SH:H HX_RH:H 
HX_AIR:H HX_ECON:H DRY_1:H 

NULL-> SYST 1 * *:0UT 
SK 1 

According to the documentation for the MG model, the hot-side entry should be called 
before the cold-side entry; thus, the GAS flows through the topping cycle are specified 
before the STM flows. As with the fossil/steam-plant example, the only demand-type 
models are the steam-drum model and the deaerator model, and the only closed loop is 
that of the water/steam flow. Both the demand model constraints and the closure of the 
recycle loop can be accomplished exactly as in the system considered in Sec. 5.3.1. 

The only additional information needed would be typical parametric values for 
the nozzle, MHD channel, diffuser, and oxygen-flow-initiator models. For the NZ model, 
only the efficiency and exit velocity need to be given. The DATA statement might 
include the following: 

NZ_1.PARM ,EFFICIENCY=0,90; .EXIT_VELOCITY=750; 

For the diffuser, the pressure-recovery coefficient and the exit velocity are required; a 
typical set of these parameters might be 

DF l.PARM .PRES RECOVERY COEF=0.50; .EXIT VELOCITY=25.0; 
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For the oxygen initiator (IN 02), the parameters might be taken as 

IN_02.PARM .ID='GAS'; .T=298.15; .P=1.0 ; .M=2.0; 

. xo2= i .o ; 

and for the MHD channel, a minimal specified set of inputs might be 

MG_1.PARM .B_FIELD=6.0; .EXIT_PRES=0.85; 
.LOAD_FACT=0.7; .WALL_TEMP=1850.; 

The other model parameters could be t reated as in Sec. 5.3.1, with the exception 
of the combustor. The combustor model has an option for potassium seed injection to 
make the combustion gases electrically conductive (a requirement for the MHD channel's 
operation). The potassium-atom concentration needed in the combustion gases is 
approximately 1% by weight, which is defined using the combustor parameter (KFRAC): 

CB_1.PARM .K_FRAC=0.01; 

Appendix E shows the SALT output for this problem. 

5.3.3 Solid-Oxide Fuel-CeU System 

Figure 16 shows a typical solid-oxide fuel-cell plant with a simple steam-turbine 
bottoming cycle. Tracing through the flows as labeled in the figure, we can represent 
the system configuration by the following PROCESS sta tement : 

HX_l;C MX_STM <-STM_MIX HX_A;C 
HT_INTER CPJAIR2 HX_C:C 
MX BURN <-AIR 1 

<-AIR_l 
HX_ST:H SK_1 

HX_FB:C HX_l:H ST_1 ->STM_DUM 
IN STM:CYCL 

The fuel-ceU system, using methane as the fuel, will require methane/steam 
reforming to produce carbon monoxide and hydrogen. Such reforming processes are 
usually act ivated only within a catalytic environment, so chemical-equilibrium 
calculations for the gas flows may incorrectly represent the flow's species 
concentrations. In this case, the correct way to handle the gas compositions is to take 
directly into account the kinetics of the situation inside the component models, without 
making use of the chemical-equilibrium code. Most models, at present, do not do this, so 
an approximation must be made. 

In our approximation, the gas-flow compositions are frozen except at those 
locations where near-equilibrium chemical conditions would prevail. These locations 
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SYST 1 * *:OUT 
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might be downstream of a reformer, or they might follow a burning process or some 
other high-temperature process. In order to freeze and unfreeze the gas-species 
concentrations, a parameter within the gas properties code (denoted GASFRZ) should be 
set to one (for freezing) or zero (for unfreezing). This parameter is declared within the 
GP model's interface and can be set using the PLI key word. 

In order to include nonequilibrium effects within the system modeling, the 
PROCESS statement can be split into several statements and the PLI key word used 
along with GASFRZ to effectively turn chemical equilibrium calculations on and off 
along the flow path. Initially, all the gas compositions may be frozen and then, right 
before the SOFC model, be unfrozen. Technically, the AIR flow would not need to be 
frozen; however, it consists only of nitrogen and oxygen, so very little error will occur if 
it is frozen also. The flows could be frozen following the mixer that represents the 
burner. Evaluation of the thermodynamic properties of a flow is considerably faster with 
frozen compositions, because the chemical equilibrium calculations are bypassed. With 
the PLI statements included, the system configuration would become the following: 

PLI GASFRZ=1; 
PROCESS 

STM_MIX-> IN_MSTM CP_STM 
GAS_AN-> IN_GAS CP_GAS HX_1:C MX_STM <-STM_MIX HX_A:C 
AIR_l-> IN_AIR CP_AIR1 HT_INTER CP_AIR2 HX_C:C 

PLI GASFR2=0; 
PROCESS 
GAS_AN-> AIR_l-> S0FC_1 
GAS_AN-> MX_BURN <-AIR_l 

SP_BURN ->AIR_1 
PLI GASFRZ=1; 
PROCESS 
AIR_l-> HX_C:H 
GAS_AN-> HX_A:H MX_AIR <-AIR_l 

HX_FB:H GT_1 HX_ST:H SK_1 * 
STM_l-> IN_STM HX_ST:C HX_FB:C HX_1:H ST_1 ->STM_DUM 

SC_1 PUMP_SC IN_STM:CYCL 
NULL-> SYST_1 *_*:OUT 

There are no demand model constraints, so the closure of the single steam-
recycle loop now must be considered. The enthalpy and pressure need to be closed. 
Closure of the pressure is achieved by setting INSTM.P equal to PUMP SC.EXIT PRES. 
The enthalpy closure could be established in several ways; here, we vary the steam mass 
flow rate until the enthalpies match. A subsystem (consisting of the steam loop) will be 
iterated over the following statements: 

VARY INSTM.M = * 1 10 
CONS INSTM.DH = 0 . 0 

No fuel-flow or stream combustor model was used in representing this fuel-cell 
system; the methane flow was initiated using an IN model. Because no model that 
generates values of POWER.INPUT would have been used (the IN model would generate 
such a value, but only when called with the INCYCL entry), the efficiency calcula
tions performed by the SYST model would not be correct. To overcome this difficulty, 
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the INGAS.POWER.INPUT parameter is assigned a value using the higher heating value 
of the methane and a PL/I statement. This PL/I statement is placed within the 
configurational statements before the SYST model (which makes use of this parameter) is 
called: 

PLI INGAS.POWER.INPUT=IN_GAS.PARM.M*55.5E6; 

Other changes to the power structures can be introduced at the same time. For example, 
the fuel-cell model does not include an inverter efficiency, so one might adjust its 
produced power to reflect such an inverter loss as follows: 

PLI SOFCl.POWER.PRODUCED=0.96*SOFC_l.POWER.PRODUCED; 

Taking into account all of these considerations, we obtain the complete SALT 
input (excluding the DATA statement) for this fuel-cell system as follows: 

PROCESS GP_1:IN 
PLI GASFRZ=1; 
PROCESS 

STM_MIX-> IN_MSTM CP_STM 
GAS_AN-> INGAS CPGAS HX_1:C MXSTM <-STM_MIX HX_A:C 
AIR_l-> IN_AIR CP_AIR1 HT_INTER CP_AIR2 HX_C:C 

PLI GASFR2=0; 
PROCESS 
GAS_AN-> SOFCl <-AIR_l MX_BURN <-AIR_l 

SP_BURN ->AIR_1 
PLI GASFRZ=1; 
PROCESS 

HX_C:H 
HX_A:H M X A I R <-AIR_1 

HX_FB:H G T l HX_ST:H SK_1 

INSTM.PARM.M = * 1.0 10.0 
INSTM.DH = 0.0 

IN_STM HX_ST:C HX FB:C HX_1:H S T l ->STM DUM 
SC_1 PUMP_SC IN_STM:CYCL 

SYSEND A 
PLI IN_GAS.POWER.INPUT = IN_GAS.PARM.M*55.5E6; 

SOFCl.POWER.PRODUCED= 0.96*SOFC 1.POWER.PRODUCED; 
PROCESS 

NULL-> SYST_1 *_*:OUT 

A typical DATA statement for this problem might be the following: 

DATA 

INGAS.PARM .ID='GAS'; .T=298.15; .P=1.0; .M=1.0; 

.XCH4=1.0; 
IN_STM.PARM .ID='H20'; .T=823.0; .P=150.; .M=5.0; 
IN_MSTM.PARM .ID='H20'; .T=298.15; .P=1.0; .M=1.60; 
INAIR.PARM .ID='GAS'; .T=298.15; .P=1.0; .M=30.0; 

AIR l-> 
GAS_AN-> 

SYSBEG A 
VARY 
CONS 
PROCESS 

STM l-> 
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.XO2=0.21; .XN2=0.79; 
HX_1.PARM .T_SET(2)=573.0; 
HX_A.PARM .T_SET(2)=1073.0; 
HX_C.PARM .T_SET(2)=1073.0; 
HX_FB.PARM .T_SET(1)=800.0; 
HX_ST.PARM .T_SET(1)=353.0; 
CP_AIR1.PARM .EXIT_PRES=3.5; .EFFICIENCY=0.85; 
CP_AIR2.PARM .EXIT_PRES=12.0; .EFFICIENCY=0.85; 
HT_INTER.PARM .T_SET=318.0; 
CP_GAS.PARM .EXIT_PRES=13.0; .EFFICIENCY=0.85; 
CP_STM.PARM .EXIT_PRES=12.0; .EFFICIENCY=0.85; 
S0FC_1.PARM .CELL_CURRENT=1.5e8eE5; .NO_OF_CELLS=230; 

.CELL_TEMP=1273.; 
SP_BURN.PARM .SPLIT_RATIO=0.7; 
ST_1.PARM .EXIT_PRES=0.180; .EFFICIENCY=0.82; 
SC_1.PARM .EXIT_PRES=0.180; 
GT_1.PARM .EXIT_PRES=1.0; .EFFICIENCY=0.87; 
PUMP_SC.PARM .EXIT_PRES=150.0; 
SYST_1.PARM .POWER_HEAD_PTR=POWER_HEAD_PTR; 

.FLOW_HEAD_PTR=FLOW_HEAD_PTR; 

Many other parameters for these models exist. For example, if heat-exchanger surface-
area calculations were important, additional parameters would have to be specified. 

Appendix F Shows the SALT output for this problem. 

S.3.4 Liquid-Metal Magnetohydrodynamic System 

Figure 17 shows a liquid-metal MHD system employing a Brayton-cycle helium 
gas loop and a sodium-metal liquid loop. The models used for liquid-metal MHD systems 
treat the two-phase, two-component flows as separately specified flows. Thus, even 
though only a single two-component flow enters a component, each flow component is 
specified as a different flow. 

The two-phase, two-component flow entering the liquid-metal MHD generator 
model (MMHD) is initiated by the two inlet models, one for the helium component (IN_ 
GAS) and one for the liquid-sodium component (INLIQ). These two flows pass through 
the generator model, a two-phase nozzle model (TPNZ), and a liquid/gas separator model 
(SEPR). This last model, which separates the two flows, generates two additional flows 
representing liquid and gaseous carry-overs in the gaseous and liquid flows, respective
ly. These carry-over flows would have to be dealt with separately in an actual system, 
but for simplicity we will specify their flow rates as zero and assume that the separator 
separates the two phases perfectly. The gaseous flow from the separator is then passed 
through the hot side of a regenerator modeled as a heat exchanger (HX REG), a radiator 
modeled as a heater with a negative heat load (HTCOOL), a gas compressor (CP GAS), 
and (finally) the cold side of the regenerator. The liquid flow from the separator passes 
through a liquid-metal diffuser (MDIFl), a heater (HTLIQ), and a liquid-metal nozzle 
(MNOZl). The gaseous and liquid flows are then mixed in the TPMXl model and cycled 
back into their respective initiator models. The whole configuration is represented by 
the following PROCESS statement: 
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FIGURE 17 Liquid-Metal Magnetohydrodynamic System 

PROCESS 
GAS_l-> IN_GAS 
LIQ_l-> IN_LIQ 
GAS_l-> LIQ_l-> MMHD_1 TPNZ_1 SEPR_1 ->GAS_CO ->LIQ_CO 
LIQ_l-> MDIF_1 HT_LIQ MN0Z_1 
GAS_l-> HX_REG:H HTCOOL CP_GAS HX_REG:C 
GAS_l-> LIQ_l-> TPMX_1 
GAS_l-> IN_GAS:CYCL 
LIQ_l-> IN_LIQ:CYCL 

This system has one demand-type model, the TPMX, which requires that the two 
inlet flows have the same pressure. This model assigns the difference in the inlet flow 
pressures to the parameter PRESDIFFIN, which should be constrained to equal zero by 
suitably varying some upstream condition in either the liquid or gaseous flows. For 
example, the gas-compressor exit pressure could be varied to satisfy this constraint: 

VARY CPGAS.EXITPRES = * 40 60 
CONS TPMX l.PRES DIFF IN = 0.0 

The system also has two recycle loops (both the gaseous and liquid flows close on 
themselves). It is important to make the mass flow rates, temperatures, and pressures 
match at the initiator models. In liquid-metal systems, it is also important to make the 
velocities match; a large portion of the energy in liquid-metal flows is carried in the 
velocity heads. 
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We have assumed perfect flow separation within the separator model, so the 
mass flow ra tes will match automatically for any flow rates chosen. By choosing the 
recycle point downstream of the TPMX model, we can close both loops by closing only 
one; this situation exists because the TPMX model has common values for the pressures, 
temperatures, and velocities of its exiting flows. The flow velocities out of the TPMX 
are equal to the liquid velocities into the mixer; therefore, if the exit velocity of the 
liquid-metal nozzle is set equal to the initiator velocity, the velocities for both flows will 
be closed. 

For the temperature closure, one might vary the heat input to the liquid flow 
until the temperature difference in the liquid initiator went to zero, as follows: 

VARY HT_LIQ.HEAT = * 1E2 5E6 
CONS IN_LIQ.DT = 0.0 

This procedure also would force IN GAS.DT to equal zero, provided the gaseous and liquid 
flows were initiated at the same temperature. Alternatively, one might vary the liquid 
initator temperature until IN_LIQ.DT equaled zero. (In this case, the INGAS.T 
parameter should be set equal to the IN LIQ.T value by means of a PLI statement.) 

For the pressure closure, some condition upstream of the IN_LIQ:CYCL entry 
must be varied until INLIQ.DP is equal to zero. The two-phase-nozzle model's exit 
pressure might be used for this task, as follows: 

VARY TPNZ_1.EXIT_PRES = * 3 47 
CONS INLIQ.DP = 0 . 0 

These s ta tements would also close the gas-side pressure, provided that the gaseous and 
liquid flows were initiated at the same pressure. As with the closure of any recycle loop, 
some consideration of the variables used to close the loop is recommended. For example, 
varying the MMHD.EX1T_PRES would not achieve blosure, because the pressure 
downstream of the TPNZ would be the same (i.e., TPNZ l.EXITPRES) no matter what 
pressure was chosen at the generator's exit . 

The complete SALT input s ta tements (excluding the DATA statement) for this 
problem can be written as follows: 

PROCESS GP l:IN 
SYSBEG A 
PROCESS 

GAS l-> 
LIQ l-> 
GAS l-> 
LIQ l-> 
GAS l-> 
GAS l-> 
GAS l-> 
LIQ l-> 

IN GAS 
IN LIQ 
LIQ l-> MMHD 1 TPNZ 1 1 
MDIF 1 HT LIQ MNOZ 1 
HX REG:H HT COOL CP GAS 
LIQ l-> TPMX 1 
IN GAS:CYCL 
IN LIQ:CYCL 

VARY HT LIQ.HEAT = * 1E2 5E6 
CONS IN LIQ.DT = 0.0 

S E P R l ->GAS_CO ->LIQ_CO 

HX REG:C 
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VARY CPGAS.EXITPRES = * 40 60 
CONS TPMX_1.PRES_DIFF_IN =0.0 
VARY TPNZ_1,EXIT_PRES = * 3 47 
CONS INLIQ.DP =0.0 
SYSEND A 
PROCESS 
NULL-> SYST_1 *_*:OUT 

A typical DATA statement might be taken as: 

DATA 
IN_GAS.PARM .ID='THR-HE'; .T=867; .P=50.0; .V=25; .M=1.0; 
INLIQ.PARM .ID='THR-NA'; .T=867; .P=50.0; .V=25; .M=100.; 
MMHD_1.PARM .EXIT_PRES= 24.0; .EFFICIENCY=0.80; 
TPNZ_1.PARM .EXIT_PRES=20.0; .EFFICIENCY=0.90; 
SEPR_1.PARM .VELOCITY_HEAD_RATIO=0.90; 
HXREG.PARM .HEAT=6E4; 
HT_COOL.PARM .HEAT=-6.5E5; 
HTLIQ.PARM .HEAT=1.0Ee; 
CP_GAS.PARM .EXIT_PRES=50.0 .EFFICIENCY=0.90; 
MDIF_1.PARM .EXIT_VELOCITY=15.0; .EFFICIENCY=0.90; 
MN0Z_1.PARM .EXIT_VELOCITY=25.0; .EFFICIENCY=0.90; 
TPMX_1.PARM .PRES_DROP=0.0; 
S YST_1. PARM . POWER_HEAD_PTR=POWER_HEAD_PTR; 

.FLOW_HEAD_PTR=FLOW_HEAD_PTR; 

The gas and liquid initiator models have been assigned the same temperature, pressure, 
and velocity values; also, the MNOZl exit velocity has been assigned the same value as 
the flow-initiator velocities, in accordance with the discussion above. The other model 
parameters have been assigned typical values. The input parameters for the liquid-metal 
diffuser and nozzle models include the exit velocity rather than the exit pressure. 

For this problem, the input statements listed above are tdl that are really 
required. However, we can elect to impose some additional constraints on the inlet and 
exit void fractions of the channel and also to maximize the system efficiency. A typical 
set of inlet- and exit-channel void fractions might range from 0.55 to 0.85. Bearing in 
mind that the TPMXl exit void fraction is the channel's inlet void fraction, we can 
impose the void-fraction range over the channel by means of the following two inequality 
constraints: 

CONS MMHD_1.VOID_FRACTION<0.85 
CONS TPMX_1.VOID_FRACTION>0.55 

The Objective function is the system efficiency, which can be maximized by minimizing 
its negative: 

MINI -SYST_1.EFFICIENCY 

Additional parameters must now be varied to provide for the additional degrees 
of freedom needed for the optimization problem. These parameters might be any of the 
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additional model inputs, such as IN_GAS.M, IN_LIQ.M, MMHD_1.EXIT_PRES, or 
HT_REG.HEAT. The size of the system is not specified, but it can be somewhat fixed by 
keeping at least one of the mass-flow rates fixed (say IN_GAS.M = 1.0). The other 
parameters would generate three additional degrees of freedom. If the HTREG.HEAT 
were to be varied, one might impose an additional constraint on the regenerator to 
prevent a pinch-point violation. For example, it might be appropriate to keep the exit 
temperature out of the cold side at least 20 K lower than the entering temperature on 
the hot side, where this last temperature is the same as the gas temperature leaving the 
SEPR 1 model: 

CONS HX_REG.FLC.TEMP<SEPR_1.FLCl.TEMP-20.0 

The complete SALT input statements for this problem, with these additional 
constraints and objective functions, would be as follows: 

PROCESS GP 1:IN 
SYSBEG A 
PROCESS 
GAS l-> 
LIQ l-> 
GAS l-> 
LIQ l-> 
GAS l-> 
GAS l-> 
GAS l-> 
LIQ l-> 
NULL-> 

IN GAS 
IN LIQ 
LIQ l-> MMHD 1 TPNZ 1 SEPR 1 ->GAS CO 
MDIF 1 HT LIQ MNOZ 1 
HX REG:H HT COOL CP GAS HX REG:C 
LIQ l-> TPMX 1 
IN GAS:CYCL 
IN LIQ:CYCL 
SYST 1 

->LIQ_CO 

VARY HT_LIQ.HEAT = * 1E2 5Ee CONS IN_LIQ.DT = 0.0 
VARY CP_GAS.EXIT_PRES = * 40 60 CONS TPMX_1.PRES_DIFF_IN = 0.0 
VARY TPNZ_1.EXIT_PRES = * 3 47 CONS IN_LIQ.DP = 0.0 
VARY HX_REG.HEAT = * 2E4 4Ee 
CONS HX_REG.FLC.TEMP>SEPR_1.FLCl.TEMP-20.0 * 
VARY IN_LIQ.M = * 1.0 450 CONS MMHD_1.VOID_FRACTI0N < 0.85 
VARY MMHD_1.EXIT_PRES = * 8 48 CONS TPMX_1.V0ID FRACTION > 0.55 
MINI -SYST_1.EFFICIENCY 
SYSEND A 
PROCESS 
NULL-> *_*:OUT 

DATA 
INGAS.PARM .ID='HE'; .T=8e7; .P=50.0; .V=25; .M=1.0; 
IN_LIQ.PARM .ID='NA'; .T=8e7; .P=50.0; .V=25; .M=100.; 
MMHD_1.PARM .EXIT_PRES= 24.0; .EFFICIENCY=0.80; 
TPNZ_1.PARM .EXIT_PRES=20.0; .EFFICIENCY=0.90; 
SEPR_1. PARM . VELOCITY_HEAD_RATIO=0.90; 
HX_REG.PARM .HEAT=6E4; 
HT_C0OL.PARM .HEAT=-e.5E5; 
HT_LIQ.PAilM .HEAT=1.0E6; 
CP_GAS.PARM .EXIT_PRES=50.0 .EFFICIENCY=0.90; 
MDIF_1.PARM .EXIT_VELOCITY=15.0; .EFFICIENCY=0.90; 
MNOZ l.PARM .EXIT VELOCITY=25.0; .EFFICIENCY=0.90; 
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TPMX_1.PARM .PRES_DROP=0.0; 
SYST l.PARM .POWER_HEAD_PTR=POWER_HEAD_PTR; 

.FLOW_HEAD_PTR=FLOW_HEAD_PTR; 

Appendix G shows the SALT output for this problem. 
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6 FAILURE CAUSES AND CURES 

6.1 INTRODUCTION 

Little was said in Chapter 5 about possible problems that might arise in 
connection with the examples presented there. In reality, it is very possible that the 
system problem that is set up will not converge to a solution. Of course, if no iterative 
tasks — such as establishing constraints or performing optimizations — are defined, then 
no system-level convergence problems will occur. However, even in these cases, some of 
the models may involve i terat ive processes that (depending on the model's input 
parameters and flows) could cause problems. Most of the existing models are sufficiently 
robust that this usually will not happen, given reasonable model inputs. In this chapter, 
we are more concerned with problems that result from system-level failures. 

To consider all of the many different types of problems that can lead to a 
convergence failure would be impossible. Failures can be classified broadly as being due 
either to the inability of numerical procedures to handle the problem or to incorrect 
posing of the problem itself. Each of these two general types of failures can be further 
subdivided. 

6.2 FAILURES DUE TO MATHEMATICAL PROBLEMS 

If the physical problem is reasonably well posed (that is, there exists a solution to 
the problem that can in fact be found by the system and subsystem tasks that have been 
set up), then the failure probably results from some inadequacy in the mathematical 
procedures. All of the mathematical procedures have various types of return messages 
to indicate why they stopped. (One of these messages, of course, is that of "normal 
termination," indicating that a solution — possibly one of many — was found, at least 
within the accuracy specified by the user.) The reasbns for termination are usually 
different for equality-constraining tasks and optimization tasks, and the two will be 
discussed separately. 

6.2.1 Constraining Tasks 

Subsystems that employ only equality constraints make use of an equation solver 
(SOLVG) that is a hybrid steepest-descent/quasi-Newtonian update technique. This 
technique, at present, has seven different terminating modes and four input parameters 
(other than the equations and variables and their bounds), which can be used to control 
the procedure. These four input parameters — ACC, DEL, MAXIT, and PRINT — can be 
assigned specific values by using the SALT code's SWITCH statement . 

The ACC parameter represents the maximum value of the square root of the sum 
of the squares of the constraint violations (i.e., root-mean-square norm) that will be 
permitted a t normal termination. The constraint violations are defined as the expression 
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on the left-hand side of the constraint equation minus that on the right-hand side. Thus, 
the constraint violation for 

CONS EXPl = EXP2 

is defined as EXPl - EXP2. The default value of ACC is taken as 0.1, a value that may 
seem somewhat large. However, for many system constraints the expressions represent 
enthalpies, powers, etc. that may be on the order of 10 . If a subsystem is set up with 
constraint violations within a much smaller range, then ACC should be set to a suitably 
small number.* It is important to consider the subsystem's constraints when defining a 
value of ACC. 

For problems with one large constraint violation and one small constraint 
violation, it is usually enough to set the value of ACC necessary for reasonable 
convergence of the larger constraint. The reason for this is that, internally, the equation 
solver will scale all of the constraints so that they are considered approximately 
equally. As the larger constraint violations are driven smaller, the smaller constraint 
violations are driven even smaller. The internal scaling, which depends on the initial 
Jacobian of the set of equations defining the constraints, is not infallible.** It is always 
best, even with normal termination, to look at the individual constraint violations at the 
solution point. The SALT code will provide a summary of the variables and constraint 
violations for each subsystem task. 

One failure mode of the equation solver involves simply hitting the maximum 
number of iterations specified by the MAXIT parameter, which has a default value of 
40. For large problems, or problems that are extremely nonlinear, this value may be 
inadequate. Hitting the maximum number of iterations does not, in itself, indicate that 
the equation solver cannot solve the problem. However, unless the problem is very large 
(i.e.. MAXIT should at least be greater than the problem dimension), MAXIT should not 
be set to an arbitrarily large number. Where the problem has been run and the MAXIT 
limit hit, the results of such a run should be examined before the limit is changed. The 
equation solver may, in fact, be having great difficulty with the problem, and simply 
increasing the limit of MAXIT may produce only an even longer unconverged computer 
run. 

The following basic behavior patterns can indicate that the equation solver is 
having difficulties with the problem: 

1. During the iterations, the values of the root mean square of the 
constraint violations do not seem to be getting smaller. The value 

*One typical error that a new user might make would be to define a subsystem with a 
constraint (say, some flow quality) without setting ACC to some smaller value (say, 
10 ). Quality being in the normal range of zero to one would mean that (without ACC 
redefined) a solution would be found with quality constrained to within only 0.1 of its 
required value. 

**The scaling can be changed by selecting a new starting point with a different Jacobian. 
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of the root mean square of the constraint violations is printed out, 
along with the iteration number, as "N=" and "F=" whenever 
PRINT>0. 

2. The equation solver's parameter BASE, which is printed out when 
PRINT>1, is not getting smaller with the iterations. The value of 
BASE is the sum of the squares of the scaled constraint violations. 
If BASE is getting smaller but the root mean square is not, it may 
mean that there is still no difficulty and the maximum number of 
iterations could be increased to obtain convergence. 

3. The equation solver's parameter MU is becoming larger. The 
parameter MU, which also is printed out whenever PRINT>1, 
represents a measure of the relative weight between the steepest-
descent step and the quasi-Newtonian step. If MU is zero, a pure 
quasi-Newtonian step is taken. As MU increases, a smaller and 
smaller step is taken, weighted more and more in the direction of a 
steepest-descent step. The steepest-descent step is along the 
negative gradient of the root mean square of the constraint 
violations (as a function of the varied parameters). A value of MU 
greater than five or six is considered large. If MU is extremely 
large (say, ten or more), the problem that has been set up is 
probably near singular (that is, the constraints are almost linearly 
dependent). In such a case, it would be unwise to simply increase 
MAXIT to try to obtain convergence; the physical problem should 
be reconsidered. 

The equation solver also may fail if it runs into one of the user-imposed bounds. 
These bounds are specified, along with the parameters being varied, within the VARY 
statement. The equation solver can only work with "equality constraints; additional 
inequality constraints on the independent variables of the problem act only as a 
safeguard to prevent extremely large variations of the parameters. The equation solver 
will attempt to locate the root of the equations within these bounds. Of course, no such 
root may exist. 

Where no root exists within the bounds, the bound being hit is indicated by 
printing out an array, Y, that represents the scaled values of the VARY parameters. 
These Y values are such that the lower and upper bounds are reseated to 0 and 1. Thus, 
those parameters greater than their upper bounds have their corresponding Y values 
greater than 1, and those parameters lower than their lower bounds have Y values of less 
than zero. The relative positions between the bounds of all other variables are also 
indicated by the Y array. Thus, the bound that is causing the problem can be determined 
and changed within the VARY statement. 

It should not be assumed, where a bound is hit, that the root lies outside of the 
bounds. At least for problems with dimension greater than one. it is possible that the 
root to the constraint equations does lie within the bounds. However, due to the 
technique employed by the equation solver, the iterations may tend to drive some of the 
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parameters out of the bounded region (and, later, back into the region) in order to find 
the solution. Thus, even though a bound on a particular variable might have been 
enlarged, the equation solver ultimately may find a root within the original bounds. If 
such were the case, changing the initial starting value of the iterations might have 
located the root without the necessity of enlarging one or more of the bounds. 

Initially, the equation solver will attempt to determine the Jacobian of the 
constraint equations by the finite-difference method. This Jacobian is then inverted to 
determine the inverse Jacobian. After this initial inversion, no more matrix inversions 
are performed; the Jacobian and inverse Jacobian are simply updated as the iterations 
proceed. At least at the initial parameter values, then, the constraints should not be 
linearly dependent and the Jacobian should be of full rank. Two simple failure modes are 
easily checked at this point: 

1. A particular constraint is independent of all the VARY parameters 
within the subsystem; this would yield a row of zeros within the 
Jacobian. 

2. No constraint is influenced by varying one of the parameters; this 
would yield a column of zeros within the Jacobian. 

Both of these problems usually result from the physical problem itself, in which case the 
problem constraints must be examined more carefully. Alternatively, the perturbations 
of the VARY parameters used in determining the Jacobian may have been too small to 
produce a change in the violations. These perturbations are evaluated using the DEL 
parameter specified in the SWITCH statement. The perturbations of each VARY 
parameter are calculated as the maximum of DEL and DEL times the difference in the 
upper and lower bounds on the parameter. DEL, at present, defaults to 10"°. If a 
particular constraint's initial violation is very large and there is only a weak influence 
(i.e. small derivative) on the VARY parameter, the finite-difference calculation of the 
Jacobian element may be wrong. This error can sometimes be rectified by enlarging 
DEL, but this procedure can produce inaccuracies in the approximation of the Jacobian 
elements for those constraints that are reasonably scaled. It may be necessary to locate 
a better starting value, where the initial constraint violations are smaller. However, 
such poorly scaled problems rarely occur. 

Another termination mode is possible with poorly scaled problems when the 
independent variables have to change by an extremely small value in order to drive the 
root mean square of the constraint violations below ACC. In these cases, the 
independent variables actually are almost at the root to the constraint equations anyway; 
thus, such a termination may be as good as a normal termination. 

Only one other termination mode exists for the equation solver. This mode is 
indicated by the message "unable to find an improved point," which occurs when the 
technique cannot find a reduced value of the root mean square of the scaled constraint 
violations when even a small step is taken in the direction of the steepest descent. This 
error can occur when the nonlinearities of the constraints are too difficult for the 
equation solver. The equation solver tries to update the Jacobian and inverse Jacobian, 
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and after many iterations these attempts will accumulate numerical inaccuracies. Thus, 
the calculated steepest-descent direction may be wrong. Although it would be possible 
to restart at this point and form a new Jacobian, the present technique does not do this; 
termination of the problem is preferred, with restart initiated manually after the failure 
has been examined. This type of termination is the hardest type to resolve, but usually 
it can be resolved by decomposing the problem into several sets of smaller-dimension 
problems. Once a solution is obtained, the problem can be reformulated so that 
convergence problems are not encountered. However, good reformations require 
considerable experience and judgment. 

6.2.2 Optimization Tasks 

Many of the failure modes for the optimizer are similar to those for the equation 
solver. For example, one can run into the maximum number of iterations. Again, the 
iterations should be reviewed before MAXIT is simply increased. The same four 
parameters — ACC, DEL, MAXIT, and PRINT — are used to control the iterations and 
print out from the optimizer. The optimizer also can terminate as a result of 
convergence of the independent variables. As with the equation solver, this outcome 
might be sufficiently close to the solution — however, for optimization problems it is 
much more difficult to tell. 

Normal termination for the optimizer is determined by the value ACC. The 
iterations terminate when the following condition is satisfied: 

|GRAD(F)*D| + SUM( |LM*C| ) < ACC 

where GRAD(F) is the gradient of the objective function, D is the latest vector change in 
the independent variables, LM is the vector of Lagrangian-multiplier estimates, C 
represents the constraint violations, and SUM( ) represents summation. The constraint 
violations are defined (as with the equation solver) even for "greater-than" inequality 
constraints. For "less-than" inequality constraints, however, the right- and lefthand 
expressions of the constraint are reversed in evaluating the constraint violation. The 
value on the lefthand side of the above inequality is denoted "L" and is printed out along 
with the iteration number "N," the objective function value "F," the independent variable 
values "X," and the constraints "C," whenever PRINT is set greater than zero. 

The termination condition specified above is often used. Because this condition 
does not depend on estimates of LM (which are calculated by the code), however, it may 
be difficult at times to define a reasonable value of ACC for termination. It may, in 
fact, be necessary to run the problem once with some small value (say, 10" ) for ACC 
and a small value (say, five times the problem dimension) for MAXIT, and then determine 
whether or not ACC should be changed. For example, after running a problem, if the 
printed values of "L" are very large (say, 10 ), reasonable convergence may be obtained 
for an ACC value of 10*. Alternatively, if the initial "L" were equal to 10"^, ACC might 
have to be 10" for reasonable convergence. 

The optimizer can fail if it runs into a location where the linear approximations 
to the constraints are locally dependent. This type of failure, detected within the 
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quadratic programming procedure called by the optimizer, is rather rare because of the 
way the constraints are handled internally. The only solution to this termination would 
be to restart the problem at another point. (The physical problem should also be 
reviewed to detect any abnormality.) 

Unlike the equation solver, the optimizer will not stop if a variable is running 
into a bound, because the optimizer has more degrees of freedom to work with in 
attempting to establish the constraints. However, it is possible to define inequality 
constraints for which no feasible region (i.e., the region in which all inequality 
constraints are satisfied) exists. The optimizer will try to find the feasible region; if it 
cannot do so, it will terminate with the message "unable to find a feasible point." 
Problems with only equality constraints may also run into this problem, because all 
independent variables have bounds, which are additional inequality constraints. In this 
case, the equality constraints cannot all be solved simultaneously within this bounded 
region. 

Two other failure modes exist for the optimizer. Both modes involve efforts to 
find an improved point, starting along a search direction from the current point. This 
search direction, determined by the quadratic subprogram, depends on the built-up 
Hessian of the Lagrangian of the problem and on the finite-difference representations of 
the gradients of the objective function and the constraints. The finite-difference 
representations of the gradients are obtained (as in the equation solver) using the 
perturbations of the independent variables by the parameter DEL. Thus, DEL needs to be 
small enough for an accurate representation of the gradients and large enough to avoid 
round-off errors. However, the gradients of the objective functions and constraints are 
calculated more than once during the optimizer's iterations. The value of DEL used will 
affect all the iterations, which is unlike the situation with the equation solver (where 
DEL is used only for the initial Jacobian calculation). 

The first failure mode associated with the line search involves having no 
"downhill" direction in which to go. This difficulty sometimes occurs in later iterations, 
when the accumulated numerical errors prevent the calculation of a good search 
direction. Sometimes adjusting DEL to a smaller number and starting over can correct 
this problem. The other mode involves an inability to locate an improved point along the 
line (as measured by a line-search function). This difficulty also sometimes occurs during 
later iterations and may be resolved by reducing DEL. Often, when this failure mode is 
encountered, one is approaching a solution. The optimizer will attempt to find an 
improved point along the search direction by pulling back towards the current point five 
times; if it fails after five attempts, a message is printed and the optimization 
terminates. 

As was the case with the equation solver, when the PRINT switch is set to 2, 3, 
or 4, additional information concerning the numerical iterations is printed out. When 
PRINT is set to 2, information about the values of the Lagrangian multipliers, the 
displacements to be attempted in the independent variables, and the initial and final 
infeasibility norms is also printed. Higher values for PRINT will cause details of the 
iterations within the quadratic programming routine to be printed out; these details are 
not discussed here. 
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6.3 FAILURES DUE TO PHYSICAL PROBLEMS 

Most of the failures due to numerical procedures discussed above would not occur 
if reasonable problems were set up. In fact, most of the difficulties users have in running 
the SALT code are caused by the actual problems that they define. These difficulties 
can take many forms. Those forms that new users of the SALT code tend to encounter 
are discussed here. 

In general, when a problem cannot be made to converge after many attempts, it 
is best to remove all the constraints and then restore them one at a time, with a separate 
computer run for each constraint added. Using a parameter sweep rather than a VARY 
statement may also help to determine the parameters' effects on the system; this 
information can be of use in reformulating the problem. 

Some of the less severe physical problems that arise will often cause the 
equation solver or optimizer to print a failure message that immediately identifies the 
problem. For example, it is often desired to constrain the heat-exchanger exit 
temperature to some specified value by varying the heat load on the exchanger. This 
constraint will work, provided that the fluid within the heat exchanger is in a single 
phase. However, if the fluid enters the two-phase region, then the exit temperature will 
be a function of the exit pressure, and many different values of the heat load will result 
in the same temperature (probably not the one desired). In this case, if the heat load 
initially caused the fluid to be in the two-phase region and this constraint was the only 
one within the subsystem, the equation solver would fail initially with the message that 
the constraint was independent of the varied parameter. On the other hand, had the 
initial value of the heat load caused the fluid to be in a single-phase region, initially 
varying the heat would yield some functional dependence on the exit temperature, but 
the equation solver might later generate heat values for which the exit temperature 
displayed no functional dependence. In this case, the equation solver might fail. 

Problems in which a fluid enters a two-phaSe region are best handled by 
constraining those thermodynamic properties that are still independent within the 
region. Thus, constraints on the exit enthalpy or quality from the heat exchanger would 
be well posed even in the two-phase region. These multiphase fluid constraints may take 
other forms. Rather than varying the heat load on the heat exchanger, the mass flow 
rate for a fixed heater load might have been varied; the same problem would occur. If 
additional parameters were being varied within the same subsystem to establish 
additional constraints, the equation solver might persist in its efforts for a considerable 
time before failing, and it might be difficult to determine by looking at the iterations 
exactly why it failed. 

A problem similar to the two-phase problem is that functional dependence of a 
constraint on a parameter can be lost. This can occur when a model parameter is 
bounded. For example, any variable that is cut off if it lies above or below some fixed 
bound may cause constraints dependent on that variable to be independent of the 
parameters being varied. This problem can result whenever the user defines constraints 
using MAX or MIN functions, or when such functions are used within models. Had the log 
mean temperature difference calculated within the heat-exchanger model been defined 
to be zero whenever the hot- and cold-temperature profiles crossed over, it would be 
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extremely difficult to constrain that variable to a specific value by varying some other 
parameter within the system. Another example involves constraining steam quality at 
some point within the system. Usually, steam quality is defined to be between 0 and 1; 
if. during the iterative process, the steam is superheated, then the quality is 1, and the 
constraint will not show any functional dependence on the parameter being varied. The 
solution to this problem (at least for subcritical pressures) is simply to let steam quality 
be defined as a continuous quantity even above and below the two-phase region. Such a 
definition is used in the SALT code. 

The loss of functional dependence of a constraint on a variable being varied can 
also occur because of the arrangement of the system models. For example, in a liquid-
metal MHD system it might be necessary to have a recycle-liquid loop. In order to close 
the pressure at the recycle point, one might vary the exit pressure out of some model in 
the liquid's flow path, only to set the exit pressure out of some other model further along 
the path later. In this case, matching the pressure at the end of the path to that at the 
beginning would be impossible; the varied exit pressure would have no effect on the 
pressure at the end of the path. The equation solver should clearly indicate that the 
pressure constraint is independent of all varied parameters within the subsystem. It is 
assumed that no other varied parameter affects the pressure downstream of the model 
having the set exit pressure. In this case, there may be no message from the equation 
solver, and one may have set up a problem with N constraints but with only N-1 variables 
that really have any sufficiently strong influence on the constraints. Varying the 
pressure might weakly affect one of the other constraints, so that there would be no 
immediate termination message. This type of problem can be extremely difficult to 
track down, even using the iteration output generated by the equation solver. One thing 
to look for in problems such as this one is a very great increase in the value of MU. 
because such problems will generate an almost singular Jacobian. 

Another situation of this type can result from the mixing of flows. The simplest 
flow mixer may take the exit pressure as the minimum of the input flow pressures. For 
such a model, varying some parameter affecting the pressure upstream of one of the 
mixer's input flows may or may not affect the mixer's outlet pressure. If the initial value 
of such a parameter influenced the mixer's exit pressure, but during later iterations it did 
not (due to the other input flow having a lower pressure), any constraint dependent on the 
mixer's exit pressure would be difficult to converge on. The solution to this problem is. 
of course, to have the flow-mixer model actually reflect both input flow pressures when 
calculating the output flow. Even so, the larger input pressure may have only a weak 
influence on the exit pressure. 

Essentially, the examples considered so far have involved the loss of functional 
dependence of the constraints on the varied parameters. The situation can also occur 
where the user has imposed several constraints to be established by variation of several 
parameters and the constraints are linearly dependent. In this case, more parameters 
exist than are needed, and one of the constraints and parameters should be removed. The 
problem would have an infinite number of solutions. This sometimes occurs when one has 
inadvertently tried to constrain both quality and enthalpy at the same point of a flow 
stream. Problems such as these will definitely make the equation-solver parameter MU 
grow large, because such problems are singular. Sometimes, by examining the variables 
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and constraints that change the most as MU grows large, one can isolate the constraints 
that are dependent. 

Inexperienced users of the SALT code sometimes generate several other common 
problems that may not hinder convergence at all. These problems generally arise with 
use of the multiple-entry models. For instance, the heat-exchanger model should never 
have one entry called for a given value of the heat load and then have the other entry 
called later within a subsystem in which the heat load is different; the influence of the 
changed heat load on the first-entry flow would never be accounted for. 

Another instance occurs when the heat exchanger is called with the parameter T 
SET set for the incorrect first entry. If T SET(2) were specified and the hot entry called 
first, an incorrect heat load would be used. Similar mistakes may be made with other 
multiple-entry components. Multiple-entry models have their advantages, but they 
should be used with caution. 

The decomposition of system configurations into nested subsystems can cause 
convergence problems at times. For example, if the values of parameters that satisfy 
constraints in an inner subsystem also affect the constraints in the outer subsystem, then 
whenever the inner subsystem fails to converge, problems can be expected in the outer 
system. Convergence within the inner subsystem should be kept at least as tight as in 
the outer system; otherwise, the calculation of gradients by the finite-difference method 
may be incorrect. It is possible with nested systems for the final iteration of all 
subsystems to converge even if some of the inner systems fail to converge for some of 
the iterations of the outer systems. 

Most of the failure modes discussed here have been encountered by analysts not 
totally familiar with systems-analysis concepts. The use of SALT has been valuable in 
helping to increase understanding of system performance, and very few failures have 
occurred as results of "bugs" in the SALT code. However, very few codes are truly "bug-
free." The authors would appreciate being informed df any problems encountered by 
users of the SALT code. 
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7 ADDING NEW MODELS AND FLOW TYPES 

7.1 THE INTERFACE FILE 

The SALT code has been designed so that new models can be added as 
effortlessly as possible, while models with arbitrary levels of complexity are still 
handled. The key to maintaining the flexibility of handling arbitrary models lies in the 
mechanism used for interfacing the constructed driver with the component models. 
Numerous approaches have been employed in this interfacing problem; the one ultimately 
used in the SALT code is relatively simple and has proven to be one of the most 
flexible. The technique is simply to read in from an external file those variables that 
must be declared for each component model used in a given system analysis. These 
variables may be the names of model parameters that are passed to the component 
models, the names of entry variables, or the names of other variables that simply need to 
be included whenever a particular model is used. 

The file that contains this interfacing information, called "INTF," is used by the 
SALT code when constructing the PL/I driver for the problem under consideration. The 
form of the interface consists of a series of header statements — each with a 0, 1, 2, or 3 
in the first column — followed by other data that depend on the number. The type-0 
statements are used to read in information that will be needed by the system models in 
locating specific substructures of the models, the type-1 s tatements define the model 
interfaces, the type-2 statements define the flow interfaces, and the type-3 statements 
define additional coding that will be unconditionally inserted into the PL/I driver. 

The specific form of the type-0 statement is as follows: 

OSUBSTRUCTURE_NAME SUBSTRUCTURE_HEAD_PTR 

Here. SUBSTRUCTURENAME is the name of the model substructure that will be 
included within a linked list for use in system models, and SUBSTRUCTUREHEADPTR 
is a pointer variable that points to the beginning of this linked list. 

Some of the substructures to be included in a linked list have variable names — 
such as FLC. FLH. FLCl. e tc . — so the character "*" may be used at the end of a 
SUBSTRUCTURENAME to refer to any substructures that begin with the specified 
SUBSTRUCTURE NAME. All such substructures starting with those common characters 
will then be included in the same linked list. Thus, to create a linked list for all of the 
flow substructures starting with the characters "FL," one would write the following: 

OFL* FLOW_HEAD_PTR 

The type-1 statement header takes the form of a 1 in the first column, followed 
by the name of the model. Statements following this header s tatement represent the 
PL/I declarations of the model structure variable, followed by the declaration of the 
model entry points, each on a separate line. The interface s tatements for the ST model, 
for example, are as follows: 
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1ST 
DCL 
1 ST BASED, 

2 NAME CHARde), 
2 FLCl, 
3 FNAME CHARde), 
3 ID CHAR(4), 
3 AT0M(8) FLOATde), 
3 PROP. 
4 (TEMP.PRES.ENTH,ENTP,QUAL.RHO.VEL.MASS) FLOATde), 

3 COMP. 
4 (XAR,XCH4.XCO.XC02.XH.XH2.XH20.XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H.XC,XCOS,XNH3,XS,XCL) FLOAT(ie), 

3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHAR(4), 
3 AT0M(8) FLOATde), 
3 PROP. 
4 (TEMP.PRES.ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie). 

3 COMP. 
4 (XAR,XCH4,XCO.XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02.XHCL,XCH30H,XC,XCOS,XNH3,XS.XCL) FLOATde), 

3 SOL, 
4 WTF FLOAT(ie), 

2 PARM. 
3 DDNAME CHAR(7), 
3 MODE CHARd5). 
3 EXIT_PRES FLOATde), 
3 EFFICIENCY FL0AT(16), 
3 MECH_EFF FL0AT(16), 
3 SR FLOATde), 
3 EXT_MASS FLOATde), 
3 FLOW_FACT FLOATde), 
3 EXHAUST_LOSS FL0ATd6), 
3 DM FLOATde), 
3 WV FLOATde), 
3 WHEELSPEED FL0AT(16), 
3 CONS FLOATde), 
3 VOL_FLOW_RATE FLOATde), 
3 PRINT FIXED BIN(15), 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) FL0AT(16), 

2 E_LOSS, 
3 PTR POINTER, 

2 COST FLOATde); 
DCL STC ENTRY; 
DCL STOUT ENTRY; 

Other variables may be declared within the interface for each model, but no 
particular variable should be declared in more than one model interface. If other 
variables are declared, they should follow the declaration of the model structure 
variable. 
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Although the statements following the header are simply PL/I declarations, some 
checking of this input is done by SALT in order to retain the names of the 2-level 
substructures and the entry names. In the case of the model declarations, some 
programmers write the comma before the next line rather than after the line. The SALT 
code checks for the presence of the string " 2 " in locating these 2-level substructures, 
but it will not properly locate those preceded by ",2." 

Usually, no executable statements appear within the interface; however, it is 
possible to include whole PL/I procedures. Such procedures are compiled right into the 
PL/I driver code, along with the other statements within the interface. Only those 
statements belonging to the interfaces of models actually used in the system problem 
will be brought into the driver code. 

The type-2 statement header takes the form of a 2 in the first column, followed 
by the name of a flow type. Statements following this header declare the form of the 
flow. For example, the interface statements for the STM flow are as follows: 

2 STM 
DCL 1 STM BASED, 

2 NAME CHARde), 
2 ID CHAR(4), 
2 AT0M(8) FLOATde), 
2 PROP, 
3 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

2 COMP, 
3 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOAT(ie), 

2 SOL, 
3 WTF FLOATde); 

Like the model interfaces, only those flow-type interfaces actually used in the system 
problem will be included in the driver code. 

The type-3 statement header takes the form of a 3 in the first column, followed 
by any comment or blanks. The lines following this header statement, up to the 
occurrence of another header line, will be included in the driver code. For example, 
declarations of unit-conversion variables might be included. 

The different types of interfaces may be freely mixed. For readability, however, 
it is useful to group all of the different types together. The INTF file may also reside in 
more than one data set and be concatenated together at run time. 

7.2 ADDING NEW MODELS 

New PL/I component models may be added to the library of SALT models at any 
time. One has only to develop the new model, taking into account a few rules necessary 
for the SALT code to interface correctly with it. and to add the appropriate interface 
statements to the INTF file. 
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Three basic rules are used in developing a new model. First, a model may have 
any number of entry points, but the first several characters of the entry name should be 
the name of the model as it appears within a PROCESS statement. The additional 
letters, up to the PL/1 limit of seven characters for entry names, define the separate 
entry points. For example, the heat-exchanger model (HX) has the entry points HXH, 
HXC, and HXOUT. When a model is referred to within a PROCESS statement without 
the use of the colon and entry name, the "C" entry (as in HXC) will be called. The main 
calculational entry should be specified as this "C" entry when new models are being 
developed. 

The second basic rule concerns the arguments that are passed to these entry 
points. The first argument to all entry points is a pointer to the model structure 
variable. The additional arguments that follow are pointers to the flow variables, which 
should be arranged in the order of pass-through flows, input flows, and output flows to 
the model. For the "OUT" entry (e.g., STOUT), the only argument should be the model 
structure variable. 

The third rule concerns the model structure variables themselves. The 1-level 
name should be the name of the model. The first 2-IeveI name should be NAME, declared 
as a CHAR(16) variable. This variable is always defined by the SALT code as the name 
of the model (including user-defined label) as it is called within the system problem. 

Any other 2-level structures may be defined by the model developer to store 
various input and output data from the model. The 2-level name POWER already has a 
special structure; if used, it should correspond to that used by the existing models. 

Beyond these three basic rules concerning the naming of the entry points, the 
arrangement of the arguments, and the naming of the model substructure variables, any 
type of PL/I coding may be used within the model. A model may even call FORTRAN 
subroutines to perform its calculations. However, the output from a model must be a 
function of only the input flows and model parameters. 'Each time a model is called with 
the same input values, it should return the same output values. 

Once a model has been developed and debugged, it need only be compiled into the 
model load library and the interface statements added to the INTF file. Usually, the 
interface file will consist of the model structure variable and the declaration of the 
entry points. The model structure has already been written, so it will need only to be 
copied from the model into the interface file, with the possible addition of initial 
attributes to define default input values. These additions to the INTF file should take 
only a few minutes of editing time. 

7.3 ADDING NEW FLOW TYPES 

New flow types to be processed by newly developed models may be added to the 
SALT code at any time ("flow type" refers to the structure of the flow variables). 
Additional steam, liquid, or gas flows that are structurally the same as STM, LIQ, or GAS 
are generated as needed within a system problem using the labeling option for flows (i.e., 
STM 1, STM 2, etc.). The existing flows of STM. GAS, and LIQ are technically of the 
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same type, but they have been defined as separate flow types to furnish the user of SALT 
with some variety in the flow names to be used. 

The addition of a new flow type is accomplished by adding the PL/I declaration 
of the flow variables to the INTF file. Of course, this new flow will not be usable unless 
new component models have been written to accommodate the new flow type. If system 
models exist that print out flows, then these models may have to be modified to accept 
the new flow types. Nothing further needs to be done to add a new flow type. 

Each flow variable, like the model structures, should have as its first 2-level 
element the variable NAME, declared as a CHAR(16) variable. This variable will be 
assigned the name of the flow as used within the system problem by the SALT code. 
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APPENDIX A: JOB-CONTROL LANGUAGE 
FOR IBM SYSTEM AT ANL 

The preceding chapters have dealt with the data that must appear within the 
STRUCT file. This file is usually the only file that must be changed when running a new 
systems-analysis problem. However, other files are used by the SALT code in the process 
of compiling the PL/I driver that represents the system under consideration. Essentially, 
these other files are temporary work files or output files and are not usually saved from 
job to job. 

Three major steps are required in running the SALT system code after the 
STRUCT file has been prepared. The first step is to run the SALT code itself and 
translate the STRUCT file into a PL/I code; the second step is to compile this code, and 
the third step is to actually execute the PL/I code. The performance of these three steps 
has been conveniently arranged in an instream job-control-language (JCL) procedure 
called SYSTEM for use on the ANL computer. The JCL using this procedure is as 
follows: 

/JOBNAME JOB TIME=2,REGION=350K,CLASS=W,MSGCLASS=W 
/*MAIN ORG=LOCAL,SYSTEM=(S33A,S33B),LINES=5 
/SYSTEM PROC 
/ONE EXEC PGM=SALT 
/STEPLIB DD DSN=Bxxxxx.SALT.LOAD,DISP=SHR 
/STRUCT DD DDNAME=STRUCIN 
/INTF DD DSN=Bxxxxx.SALT,INTF,DISP=SHR 
/SYSDRV DD UNIT=SASCR,SPACE=(TRK,(2,1)),DISP=(NEW,PASS) 
/SYSPRINT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1511) 
/PLO EXEC PGM=IEL0AA,PARM='NS,NA,NX,NAG,NOESD,NSTG,NOF,NOP' 
/STEPLIB DD DSN=PLI.OPT.LINKLIB,DISP=SHR 
/SYSIN DD DSN=*.ONE.SYSDRV,DISP=(OLD,DELETE) 
/SYSLIN DD UNIT=SASCR,SPACE=(CYL,6), 
/ DISP=(NEW,PASS),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120) 
/SYSPRINT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137 ,BLKSIZE=1511) 
/SYSPUNCH DD DUMMY 
/SYSUTl DD SPACE=(CYL,e),UNIT=(SASCR) 
/TWO EXEC PGM=LOADER,REGION=150K,COND=(9,LT,PLO) 
/SYSLIB DD DSN=SYS1.PLIBASE,DISP=SHR 
/ DD DSN=Bxxxxx.SALT.LOAD,DISP=SHR 

DSN=*.PLO.SYSLIN,DISP=(OLD,DELETE) 
SYSOUT=*,DCB=(RECFM=FB,LRECL=121,BLKSIZE=1573) 

DUMMY 
SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1511) 
DUMMY 

DD 
DD 
DD 
DD 

/SYSLIN 
/SYSLOUT 
/SYSPNCH 
/SYSPRINT DD 
/SYSPUNCH DD 
/ PEND 
/ EXEC SYSTEM 
/ONE.STRUCIN DD 

(contents of file STRUCT) 
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These JCL lines, which carry out the three basic steps referred to above, are 
briefly described here. 

The first line of any JCL, the JOB card, specifies the maximum time (in minutes) 
that a job is permitted to run on the computer and the amount of main core used. The 
parameter CLASS defines the priority of the job and may take the values of U (for 
highest priority), W (for normal priority), X (for overnight service) or Y (for weekend 
service). The MSGCLASS parameter may be set to W to fetch the output at the 
computer terminal or to A to print the output on a line printer. 

The second line specifies on-line printer destinations, the computer used, and the 
maximum number of output lines. If a large number of parameter sweeps are to be 
performed, the LINES parameter (which specifies the maximum number of lines in 
thousands) may need to be increased. 

The next line specifies the beginning of the SYSTEM procedure. The following 
group of six lines carries out the first step, the translation of the STRUCT file. Here, 
STEPLIB is the data set containing the SALT code, INTF is the interface file, SYSDRV is 
the output file containing the generated PLI code, and SYSPRINT contains a reflection of 
the STRUCT file and possible error messages. 

The next eight lines, starting with //PLO, accomplish the compilation of the PLI 
code. In this case, STEPLIB refers to the data set containing the PLI compiler, SYSIN is 
the PLI code generated in the first step, SYSLIN is the compiled code, SYSPRINT 
contains error messages from the compilation, SYSPUNCH is not used, and SYSUTl is a 
work file used by the compiler. 

The next group of eight lines carries out the final step required in running the 
compiled code. The SYSLIB file contains the concatenation of several data sets 
representing the components of the system and various IBM-supplied procedures, such as 
SIN, COS, ABS, etc. (These are in SYSl.PLIBASE for PLI codes.) The component models 
and other mathematical procedures are referenced by the next two lines. Here, SYSLIN 
refers to the compiled PLI code, SYSLOUT contains the loader map and loader error 
messages, SYSPNCH and SYSPUNCH are not used, and SYSPRINT contains the major 
output for the system analysis. 

Finally, the next two lines close the instream procedure (//PEND) and execute 
this procedure (//EXEC SYSTEM). For most systems-analysis problems, the above JCL 
need not be changed from job to job. The rest of the JCL represents the STRUCT file, 
preceded by the //ONE.STRUCIN DD * line. 
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APPENDIX B: ABBREVIATIONS FOR KEY WORDS 
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APPENDIX B: ABBREVIATIONS FOR KEY WORDS 

The SALT code will accept abbreviations for some of the key words. These key 
words and their abbreviations are as follows: 

Key Word 

PROCESS 
SYSBEG 
SYSEND 
CONSTRAIN 
CONTROL 
MINIMIZE 

Abbreviation 

PROC 
SYSB 
SYSE 
CONS 
CONT 
MINI 



106 



107 

APPENDIX C: UNITS USED 
IN SALT MODELS 



108 



109 

APPENDIX C: UNITS USED 
IN SALT MODELS 

The units used throughout in the SALT models are SI units, with the exception of 
pressure (specified in atmospheres). Those parameters (such as efficiency) commonly 
expressed in percent are specified as fractions. Thus, 88% would be input as 0.88. 
Angles (such as gravitational angles) are in degrees. 
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FSOCESS GP 1 : I N 

SYS:.E5 A 

prccEss 
•A?. !-> 
S:K_I-> 

STM HP1-> 
SW. HP2-> 
STfl LPl-> 
STH LP2-> 
STM l-> 

IN 
H\ 
ST 
HX 
ST 
ST 
SC 
FH 
FH 
FH 
FH 
MX 
FU 
CE 
FL; 

LIO l -> 

H20 SD_1 ->STH_1 
SH:C ST_HP1 ->STH_HP1 
HF2 ->STII_Kr2 
FHiC ST_IP ->STM_IP 
LPl ->STn_LPl 
LF2 ->STH LF2 ST_LP3 ->STH DUH 
1 
HP1:H <-STH_DLlM 
h;P2:H <-STM_HPl 
LP'cH <-STM_HP2 
LP2:H <-STH_LP1 
SC <-ST;tLP2 
,?_SC HX_ECOM:C FH_LP2:C FH_LP1:C 

Aa_1 <-STH_IP 
P_FH FH_HP2:C FH_HP1:C 
F!-i <-STH_l 
P DFP HX BOIL:C IN H20:CYCL 

VA:;Y HX_EOIL.HEAT = » I E I 2 5 E 6 
CCJ'S irLi^io.DH = 0.0 
VAP.Y FiJ::?_CFP.EXIT_PnES = » 100 200 
cc'io IH_K:O.C? = 0.0 
VASY ST_IP.SR = * 0.01 0.20 
CKo DuAR_l.PAF,M.CLJAL = 0.0 

SY3:KD A 

F.-.CCESS 
AIP_l-> 
F'JEL_1-
G.V3_l-> 

N'JLL-> 

IN_AIR CP_AIR HX_AIR:C 
IllF COAL DRY_1 CB_1 <-AIR 1 ->GAS 1 
tlX_BOIL:H HX_SH:H HX_P.H:H 
HX_A:R :H HX_EC0N:H DRY 1:H SK 1 
SYST 1 » «:OUT 

DATA 
I» AIR.PARM ID='GAS'; 

X(i2=0.72; 
ID= 'K20 ' ; 
(3=0.20; 

MiSS=2.0; 
.H=0.0079: 
.A£H=0.0S71; 

SD_1.PARM .CUAL=0.20; 
CP_AIR.FAF:M .ExiT_rPES=i 

IN H20.PARM 

It;F_COAL.PARH 

.1=298.15; .P=1.0; .H=1<i.O; 

.XO2=0.22; 

.T=0.0; .P=180.0i .H=75.0; 

.C=0.5213; .H=0.060; 
S=0.0085; .H20=0.227; 

.HHV=20.743E6; 

15; .EFFICIENCY=0.8S; 
C3_1.FARM .ASH_DET=0.0 
DSY_1.P ;RH . H 2 0 _ D E T = 0 . 0 5 ; 
HX_EGIL.PAr;M .;iEAT=12E6; 
HX_SH.F,'.RM . T _ S E T ( 2 ! = 8 1 1 . ; 
HX_PK.PA::H . T _ S E T ( 2 ) = 8 1 1 . ; 
HX_AIR.P.' ,RI1 . T _ S E T ( 2 ) = 5 0 0 . ; 
HX_ECOH.FARM . H E A T = 1 E 5 ; 
S T J I R I . F A R M . E X I T _ F R E S = 1 0 0 . ; 
ST KF2.rARll .EXIT_FRES=50.; 
ST_IP.FARH .EXIT_F.':ES=15.; 
ST_LP1.PARM .EXIT_PRES=5.; 

ST_LP'2.PARH .EXIT_PRES=1.; 
ST_LP3.PAF.Il .EXIT_PRES=0.066; 
SC 1.PAP.H .EXIT_PRES=0.066; 
FUi;P_SC.PARM .EXIT_FPES=15.0; 
FUMP_FH.PA-M .EXIT_FRES=180.0; 
FL"i?_3FP.FARM .EXIT_PRES=190.0 
SYST_1.PARI1 .FOIiER_HEAD_PTR=PDWER_HEAD_PTR; 

.FLO',UIEAO_PTR=FLOH_HEAD_PTR; 

.EFFICIENCY=0.8'i 

.EFFICIENCY=0.8't 

.EFFICIENCY=0.86 

.EFFICIENCY=0.87 

.EFFICIENCY=0.87 

.EFFICIENCY=0.87 

.O=0.3152;» 

.SR 

.SR: 

.SR= 

.SR: 

.SR: 

.SR= 

0.10; 
0.10; 
0.07; 
0.05; 
0.05; 
0.0; 

.EFFICIENCY=0.90; 

.EFFICIENCY=0.90; 
EFFICIENCY=0.90; 
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LOOP: A N= 1 F= 1.2<i60Et10 
X= 1.2CC0E-107 1.9CC0E*C2 7 . 0 0 0 0 E - 0 2 
C= - 1 . 1 1 6 : E » 0 5 8 . 1000E+00 - 6 . 3 1 3 3 E - 0 2 

LCOP: A 
S= '*.5277E»05 9.900CE-01 1.1525E*00 
m- O.OO00CE*OO 

LOOP: A N= 5 F= 3.'i2^3E*02 
X= 1.S625E*07 1.S1S2E*CI2 1.2'i78E-01 
C= -1.85P3E*01 1.8753E-10 6 .'i7'i'iE-10 
SCALE TEr:::NATIOH. ACTUAL= 1.67040E-09 IN LOOP: 

IN H20 

SD 1 

IB=H20 
TEi;P = 6 . 3 i r i S E * 0 2 
F^ES = l .SCO00E*C2 
VEL = O.CC030E+CO 
ENTH = 1 .89132E*06 
CASS = 7 .5CC00Et01 

QUALITY = 2 . 0 0 0 0 C E - 0 1 

MODE = DESIGN 
TYPE = COUNTER 
DESIGN N;,SS FLOW RATES = 15.'i5 15.00 K6/S 
INLET TENrERATURES = 1665.03 631.15 K 
AVER.'.GE TE;:FZPATUrES = 13'i3.92 721.07 K 
DESIGN THERNAL RESISTIVITIES = 1.0000E*00 O.OOOOE*00 O.OOOOEtOO SQ-M K/H 
CVEPALL MEAT TR.'.toFER COEF = 1.00000E»00 H/SQ-H K 
LCG 1;:AN TEN? DIFFERENCE = 5.93CS9E*02 K 

HEAT TRANSFEPEED = 1.32690E«07 U 
HEAT TRANSFER SURFACE AREA = 2.23728E*0<t SQ-M 
HEAT FLUX = 5.930S9E*02W/SQ-M 
SU'̂ .FACE TEMPERATURES = 1071.99 1071.99 K 

MODE = DESIGN 
TURBINE EFFICIENCY = 8.'i0000E-01 
;̂ECMA::ICAL EFFICIENCY = 9.75000E-01 
FOllE", FRC3UCED = 2.1S«2E*06 
FLON FACTGR = 2.365S0E-05 
DESIGN MASS FLOW RATE = 1.50000Et01 
SPLIT RATIO = l.OOOOOE-01 
VOL FLCN RATE = <i.36901E-01 
EXHAUST LOSS = O.O0O0OE*0O 

ST HP2 

MODE = DESIGN 

TU?,BINE EFFICIENCY = 8.'TOOOOE-01 

MECHANICAL EFFICIENCY = 9.75000E-01 

FO;;ER FRCDUCED = 2.09772E*05 

FLOW FACTOR = 3.57563E-05 

DESIGN MASS FLOW RATE = 1.35000E«01 

SPLIT RATIO = L.OOOOOE-01 

VOL FLOW RATE = 6.93773E-01 

EXHAUST LOSS = 0.O0000E*00 
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MODE = DESIGN 
T'iFE = COUNTER 
DESIGN MASS FLOW RATES = 15.45 12.15 KG/S 
INLET TENFERATURES = 1022.75 621.86 K 
AVERAGE TE,̂ :PE'ATURES = 878.57 717.93 K 
DESIGN THERNAL RESISTIVITIES = 1.0000E*00 O.OOOOE»00 O.O000E*00 SQ-M K/H 
OVERALL HEAT TRiNSFER COEF = 1.00000E+00 H/SQ-M K 
LC; MEAN TEMP DIFFERENCE = 1.55072E«02 K 
P.EA.T TRANSFERRED = 5.'*73S9E»06 W 
HE.'.T TRANSFER SURFACE AREA = 3.52990EtO'i SQ-M 
HEAT FLUX = 1 .5507:E*02W/SQ-M 
SURFACE TEMPERATURES = 867.68 867.68 K 

ST_IP 

ilCDE = DESIGN 
TU.-BINE EFFICIENCY = 8.60000E-01 
MECHANICAL EFFICIENCY = 9.75000E-01 
PG::ER PRODUCED = 3.87g20E + 06 

FLCN FACTOR = 6.89S66E-05 
DESIGN MASS FLOW RATE = 1.21500E+01 
SPLIT PATIO = 1.2'-,777E-01 
VOL FLOW RATE = 2.322S6E*00 
EXHAUST LOSS = O.OOCOOE*CO 

ST LPl 

MODE = DESIGN 
TU-,BINE EFFICIENCY = 8.70000E-01 
MECHANICAL EFFICIEN'CY = 9.75000E-01 
POWER FPCOUCEO = 2.5'i706Et06 
FLOW FACTOR = 1.7763SE-0:t 
DESIGN MAES FLOW RATE = 1.063<(0E*01 
SPLIT RATIO = 5.0GOOOE-02 
VOL FLOW PATE = 'i.919S3E*00 
EXHAUST LOSS = O.O0O0OE*OO 

ST LP2 

MODE = DESIGN 
TU'BIN'E EFFICIENCY = 8.70000E-01 
NECHAI.'ICAL EFFICIENCY = 9.75000E-01 
FGi.'ER PRODUCED = 2.69S30E*06 
FLOW FACTOR = <i.536'(0E-0'i 
DESIGN MASS FLOW RATE = 1.01023E*01 
SPLIT RATIO = 5.00000E-02 
VOL FLOW RATE = 9.i5648E*00 
E.VHAUST LOSS = O.O0000E*00 

MODE = DESIGN 
TURBINE EFFICIENCY = 8.70000E-01 
MECHANICAL EFFICIENCY = 9.75000E-01 
FC:;FR PRODUCED = 3.22887E+06 
FLOW FACTOR = 1.82963E-03 
DESISN Mf.SS FLOW RATE = 9.59715E+00 
SPLIT RATIO = O.OOO00E*OO 
VOL FLOW RATE = 9.65782E-02 
EXHAUST LOSS = O.OOOO0E«O0 

EXIT PRESSURE = 6.60000E-02 
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HEAT= 2.783<;8E*06 
SU:COOL= 5.5500CEtOO 
AREA= 1.9112-3E*01 
TTD= 2.76?57E*01 
DCTD= 6.052S2E»01 
HDP= i.o::iOOE-02 
CO? = 3.00000E-03 
APEAS= l.<t3913E*01 
HEATS= 6.Co551E«05 
US = <i.32132E*C2 
LMTDS= 9.73'.30E*01 
HTEMP= 7 . 1 5 S 3 : E » 0 2 
CTENP= 5.5667:-E*02 

3, 
5, 
2. 
7. 
5, 
6 
5 

.OOOOOE-03 

.C2755E>00 

. 12<(S6E*06 

.17251Et03 

.89255E*01 

.01506Et02 

.«577E*02 

3.OOOOOE-03 
' t . l£492E-01 
5.0069<iE«0<i 
1.90172E*03 
6.29126E»01 
5.84362Et02 
5.19003E'02 

5.78S12E»02 
5.18281E»02 

FH HP2 

HEAT= 2.996'i9E»06 
SU3C00L= 5.5500CE«00 
APnA= 2.3'i2SCE*01 
TTD= 1.E7690E*01 
DCTD= 5 . 7 6 5 3 : E » 0 1 
»?.?= 1. 
CD? = 
A'-EAS= 
HEATS= 
US = 
LMTDS= 
HTEI:P= 
CTEM?= 

COOOOE-02 
3.OOOOOE-03 
1.49395E«-01 
2.9966CE*05 

3.035S2E*02 
6.5S513Et01 
6.2«i3S3£*02 
5.1828:iE*02 

3.OOOOOE-03 
S.<t3S51E*00 
2.6180'iE*06 
6.37822E+03 
4.S6f^21E»01 
5.51321E*02 
5.13970E+02 

3.OOOOOE-03 
6.67796E-01 
7.S7S30E*0«i 
1.972.S2E»03 
5.9S039Et01 
5.37253E*02 
't.752'i5E*02 

5.31703E*02 
<i.7'iO'i9Et02 

HEAT= 
SU^COi 
ARtA= 
TTD = 
DCTD = 
HDP= 
CDP 
AREAS 
HEATS 
US 
LMTDS 
HTEN? 
CTEMP 

2.69M9E + 06 
0L= 5.5500DE»00 
2.2336.C:t01 

l.'iSOSOEtOl 
5.6<ij51E»01 

1.00000E-02 
= 3,OOOOOE-03 
= 9.51650E*00 
= 8.50713EtO* 
= 1.1045tE*02 
= 6.36'iSIE+Ol 
= 5.17'i69E»02 
= *.10309Et02 

3.OOOOOE-03 
1.33195E*01 
2.52352E*06 
' i . l3152E*03 
' i.59WFEt01 
'i.42722E*02 
4.CSS33E+02 

3.OOOOOE-03 
8.2<t<(30E-01 
8.03979Et04 
1.67761E«03 
5.8<;916E*01 
'*.25117E»02 
3.6'i5'iOEt02 

<i.19567E»02 
3.63112E*02 

HEAT= 1 
SUBCOOL 
AREA= 2 
TTD= 9.' 
DCTD= 3 
HDP= 1 
CDP = 
AREAS= 
HEATS= 
US = 
LHTDS= 
HTEl;P= 
CTEMP= 

.90369E*06 
5.55000E*00 

.38097Et01 
52J.';E*00 

79210E*01 
OOCOOE-02 

OOOOOE-03 
OOOOOE+00 
OOOOOE+00 
'tC000E»02 
0OO0OE»CO 
72364E»02 
63112E*02 

3.00000E-03 
2.3S097E»01 
1.81283E*06 
3.<i54S'iE»03 
2.20382E»01 
3.7286'iE*02 
3.63112E*02 

3.OOOOOE-03 
1.<ilS57E»00 
9.0858SE*04 
1.60700Et03 
3.98565Et01 
3.7286'iEt02 
3.31007E*02 

3.6731<tE*02 
3.29393E*02 

EXIT PRESSURE = 1.50000EtD1 
EFFICIENCY = 9.00000E-01 
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HX_ECON 

MODE = DESIGN 
TYPE = COUNTER 
DESIGN MASS FLOW RATES = 15.<i5 13."18 KG/S 
INLET TEMPERATURES = 5S<t.'*9 327.61 K 
AVERAGE TEMPERATURES = 581.6'* 328.50 K 
DESIGN THERMAL RESISTIVITIES = 1.0000E*0D O.O00OE»00 O.OO0OE*OO SQ-H K/H 
OVERALL HEAT TRANSFER COEF = 1.00000E*00 H/SQ-M K 
LC3 MEAN TEMP DIFFERENCE = 2.53129E*02 K 
HEAT TRANSFERRED = 1.0D000E*05 M 
HEAT TRANSFER SURFACE AREA = 3.95055Et02 SQ-M 
HEAT FLUX = 2.53129E*02H/SQ-H 
SURFACE TEMPERATURES = 331.36 331.36 K 

DEAR 1 
" CUAL= 6.'(7'l'iE-10 

PUMP_FH 

EXIT PRESSURE = 1.80000E»02 
EFFICIENCY = 9.00000E-01 

PUMP BFP 

EXIT PRESSURE = 1.81818E+02 
EFFICIENCY = 9.00000E-01 

NODE = DESIGN 
TTPE = COUNTER 

DESIGN MASS FLOW RATES = 15.<T5 75.00 KG/S 

INLET TEMFSRATURES = 2331.78 621.71 K 

AVERAGE TEMPERATURES = 1998.13 626.13 K 

D:SIGN THERMAL RESISTIVITIES = I.OOOOE*OO COOOOE+OO O.OOOOE*OO SQ-H K/H 
OVERALL HEAT TRANSFER COEF = 1.00000E*00 H/SQ-M K 
LOS MEAN TEMP DIFFERENCE = 1.31531E*03 K 
KEAT TRANSFERRED = 1.86251E*07 H 
HEAT TRANSFER SURFACE AREA = 1.JSM1E+M SQ-H 
HEAT FLUX = 1.3«31E*03W/SQ-M 
SURFACE TEMPERATURES = 986.13 986.13 K 

IN AIR 

ID=GAS 
TEMP = 2.9S150E-102 
PRES = 1.00000E*00 
VEL = O.COOOOE+00 
ENTH = -9.91020E*OD 
MASS = 1.10000E*01 

MODE = DESIGN 
EXIT PRES = 1.1500CE»00 
EFFICIENCY = 8.80000E-01 
MASS FACTOR = 1.01731E-02 
H FACTOR = 1.00000E+00 
PRESSURE RATIO = 1.15000E*00 



118 

MODE = DESIGN 
TYPE = COUNTER 
DESIGN MASS FLOW RATES = 15.15 11.00 KG/S 
I t iLET TENFERATURES = 7 3 1 . 1 0 3 1 1 . 9 1 K 
AVERAGE TENFERATURES = 659.11 105.96 K 
DESIGN THER̂ :<,L RESISTIVITIES = I.OOCOE'OO 0.0000E*00 
CVEFALL HEAT •TRiNSFER COEF = 1 .00000E*00 H/SQ-H K 
LC3 MEAN TEMP DIFFEPEN'CE = 2.53006E*02 K 
HEAT TRAN'SFERRED = 2.6J:S33E*06 H 
HiAT TP/NSFER SURFACE AREA = 1.06255E*01 SQ-H 
HEAT FLUX = 2.533C6E»02W/SQ-H 
SURFACE TEMPERATURES = 1 8 1 . 3 9 1 8 1 . 3 9 K 

O.O00OE»OO SQ-H K/H 

INF_COAL 
FUEL KHV= 2.0713CE*07 
FUEL h:ASS= 2.00CO0E*0O 

FUEL WEIGHT FRACTIONS 
CAOCON HYOrOSEN OXYGEN NITROGEN SULFUR CHLORINE HATER ASH 
0,521300 0.0600CO 0.315200 0.007900 0.008500 0.000000 0.227000 0.087100 

DRY 1 
FUEL HHV= 2.51927E*07 
FUEL MASS= 1.62737E*00 
H20_DET= 5.O0000E-O2 
K20 RE;;0VCD= 3.72632E-01 

HEAT RECUIRED= 9.17£62E*05 

CB 1 

FUEL WEIGHT FRACTIONS 
CARSON HYDROGEN OXYGEN NITROGEN SULFUR CHLORINE HATER ASH 
0.610666 0.073739 0.337371 0.009709 0.010116 0.000000 0.050000 0.107014 

FUEL MASS BURNED = 1.15317E*00 
FUEL HHV = 2.S5187E+07 
FUEL HEAT OF FORM AS BURNED = -1.38836E»0S 
HEAT LOSS FRACTICN = O.OOO00E*00 
STOICHIOMETRY = 1.09162E«00 
CARBON BURNOUT = 1.00000E«00 
ASH MASS REMOVED = 1.71200E-01 
ASH MASS IN FUEL = O.O0OO0E»OO 
HATER MASS IN FUEL = 8.136S1E-02 
SLURRY CONCENTRATION = 9.11006E-01 
POTASSIUM MASS = O.OC0O0E«OO 
SEED FRACTICN = O.OCOOOE*00 

FUEL ELEMENT FRACTIONS (AS BURNED) 
ARGON CARBON HYDROSEN POTASSIUM NITROGEN OXYGEN SULFUR CHLORINE 
0.000000 0.717167 0.083811 0.000000 0.010873 0.183539 0.011699 0.000000 

OXIDIZER ELEMENT FRACTIONS 
ARGON CARBON HYDROGEN POTASSIUM NITROGEN OXYGEN SULFUR CHLORINE 
0.000000 0.000000 0.000000 0.000000 0.756328 0.213672 0.000000 0.000000 

GAS ELEMENT FRACTIONS 
ARGCN CARBON HYDROGEN POTASSIUM NITROGEN OXYGEN SULFUR CHLORINE 
0.000000 0.067168 0.008355 0.000000 0.686227 0.266229 0.001100 0.000000 

ENERGY REJECTED = 7.75985E*06 M 
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FLOH; LI(J.I 

MODEL 

I N HZO 
SO 1 
HX FU 
PUtip BFP 
HX_BOI l 

FLOU: S T H . l 

HODEL 

SD 1 
HX SH 
ST HPl 
ST HP2 
HX RH 
SI IP 
ST LPl 
ST LP2 
ST LP3 
SC"1 
HX SC 
puiip SC 
HX ECON 
FH LP2 
FH LPl 
DEAR 1 
PUHP FH 
FH HP2 
FH HP1 
HX_FW 

FLOH: STH.HPI 

HODEL 

ST HPl 
FH HPl 
FH_HP2 

FLOH: STH_HP2 

HODEL 

ST HP2 
FH HP2 
FH_LP1 

FLOH: S T H . I P 

HODEL 

ST I P 
DEAR_1 

FLOH: STN .LP I 

HODEL 

ST LPl 
FH LPl 
FH_LP2 

FLOH: STH_LP2 

HODEL 

ST LP2 
FH LP2 
MX_SC 

FLOH: STM.DUM 

HODEL 

ST LP3 
FH_HP1 

PRES. 
(ATM) 

1 .8 I )OE>02 
1 . 8 0 0 E « 0 2 
1 . 7 6 8 E « 0 2 
1 . 8 1 8 E » 0 2 
1 . 8 0 0 E » 0 2 

PRES. 
(ATM) 

1 . 8 0 0 E » 0 2 
1 . 7 8 2 E » 0 2 
1 . 0 0 0 E » 0 2 
S.OOOE'Ol 
1 . 9 5 0 E * 0 1 
1 . 5 0 0 E « 0 1 
5 . 0 0 0 E < 0 0 
I.OOOE'OO 
6.600E-02 
6.600E-02 
6.600E-02 
l.SOOE'Ol 
l.<i85E<0) 
1.<i76E*01 
1.163E»01 
l.teSEtOl 
l.S00E»02 
1.781E»02 
1.768E.02 
1.768E»02 

PRES. 
(ATM) 

1.000E>a2 
9.90CIE»01 
9.900E»01 

PRES. 
(ATM) 

5.000E»01 
1.950E»01 
1.950Et01 

PRES. 
(ATM) 

1.500E401 
1.500E«01 

PRES. 
(ATHI 

S.OOOEtOO 
1.950E«00 
1.950E»00 

PRES. 
(ATM) 

I.OOOEtOO 
9.900E-01 
9.900E-01 

PRES. 
(ATM) 

6.600E-02 
6.600E-02 

TEMP. 
(K) 

i.311E*02 
6.311E»02 
6.212E«02 
6.217E.02 
6.311E.02 

TEMP. 
IK) 

6.311E»02 
8.110E<02 
7.202E>02 
6.219E*02 
8.110E>02 
6.150E«02 
5.176E»02 
3.731E»02 
3.113E»02 
3.113E»02 
3.113E*02 
3.276E»02 
3.291E>02 
3.631E»02 
1.103Et02 
1.709E»02 
<i.71[IE»02 
5.I83E»02 
5.567E*02 
5.567E«02 

TEMP. 
IKI 

7.202E»02 
5.788E»02 
5.788E»02 

TEMP. 
(K) 

6.219E«02 
5.317E»02 
5.317E«02 

TEMP. 
IK) 

6.'i50E«02 
6.<i50E»02 

TEMP. 
(K) 

5.176E»02 
<i.l96E»02 
1.196E«02 

TEMP. 
(K) 

3.731Et02 
3.673E*02 
3.673E»02 

TEMP. 
IK) 

3.113E»02 
3.113E*02 

OUTPUT BY FLOH 

VELOCITY 
IH/S) 

O.OOOE'OO 
O.OOOE'OO 
0.000E«O0 
O.OOOE'OO 
O.OOOE'OO 

VELOCITY 
IM/S) 

O.ODOE'OO 
o.oooE>oa 
O.00OE«0O 
O.OOOE'OO 
O.OOOE'OD 
D.OOOE'OO 
O.OOOE«00 
O.OOOE'OO 
O.OOOE'OO 
O.OOOE'OO 
D.OOOE'OO 
0 . 0 0 0 E * 0 0 
0 . 0 0 0 E > 0 0 
0 . 0 0 0 E « 0 0 
O.OOOE'OO 
O.OOOE'OO 
O.0OOE»00 
O.OOOE'OO 

o.aooE<oo 
O.OODE'OO 

VELOCITY 
(M/S) 

O.OOOE'OO 
O.OOOE'OO 
O.OOOE'OO 

VELOCITY 
IM /S) 

O.OOOE'OO 
O.OOOE'OO 
O.OOOE'OO 

VELOCITY 
IM /S) 

O.OOOE'OO 
O.OOOE'OO 

VELOCITY 
( H / S ) 

O.OOOE'OO 
O.O0OE«OO 
O.OOOE'OO 

VELOCITY 
(M/S) 

o.oooEtoa 
0.000E«0O 
O.OOOE>00 

VELOCITY 
(H/S) 

O.OOOE^OO 
O.OOOE'OO 

ENTH. 

(J/KS) 
1.891E*06 
1.710E«06 
1.612E»06 
1.613E*06 
1.891E<06 

ENTH. 
IJ/KG) 

2.195E»06 
3.380E>06 
3.231E»06 
3.071E»06 
3.522E»06 
3.191E«06 
2.919E»06 
2.675E<06 
2.330E<06 
1.599E«05 
2.275E»05 
2.293E»05 
2.357E»05 
3.779E»05 
5.777E*05 
8.122E»05 
8.636E<05 
1.063E»06 
1.219E»06 
1.219E»06 

ENTH. 
(J/KG) 

3.231E.06 
1.375E406 
1.375E»06 

ENTH. 
(J/KG) 

3.071E«06 
1.127E«06 
1.127E*IJ6 

ENTH. 
(J/KG) 

3.191E»06 
3.191E»06 

ENTH. 
IJ/KG) 

2.919E»06 
6.168E<0S 
6.168E«0S 

ENTH. 
1 J/KG) 

2.675E*06 
3.9'i5E*05 
3.915E*05 

ENTH. 
1J/KS) 

2.330E.06 
2.330E»06 

MASS 
( K G / S ) 

7 . 5 0 0 E » 0 1 
6 . 0 0 0 E > 0 1 
7 . 5 0 0 E » 0 1 
7 . 5 0 0 E > 0 1 
7 . 5 0 0 E > 0 1 

MASS 
1KG/S) 

1 . 5 0 0 E < 0 1 
1 .500E«I )1 
1 . 3 5 0 E . 0 1 
1 . 2 1 5 E » 0 1 
1 . 2 1 5 E » 0 1 
1 . 0 6 3 E 4 0 1 
1 . 0 1 0 E » 0 1 
9 . 5 9 7 E » 0 0 
9 . 5 9 7 E » 0 0 
9 . 5 9 7 E « 0 0 
1 . 3 1 8 E » 0 1 
1 . 3 1 8 E « 0 1 
1.3<iSE«01 
1 . 3 1 8 E « 0 1 
1 . 3 1 8 E » 0 1 
1 . 5 0 0 E » 0 1 
1 . 5 0 0 E » 0 1 
I .SOOEtOt 
1 . 5 0 0 E » 0 1 
1 . 5 0 0 E » 0 1 

MASS 
( K G / S ) 

1 . 5 0 a E « 0 0 
1 .500E»0t l 
1 . 5 0 0 E > 0 0 

MASS 
( K G / S ) 

1 . 3 5 0 E < 0 0 
2 . 8 5 0 E < 0 0 
2 . 8 5 0 E « 0 0 

« 
MASS 

( K G / S ) 
1 . 5 1 6 E » 0 0 
1 .516EtOO 

MASS 
IKG/S) 

5.317E-01 
3.382E»00 
3.382E«00 

MASS 
IKG/S) 

5.051E-01 
3.8S7E«00 
3.887E.00 

MASS 
IKG/S) 

O.OOOE'OO 
O.OOOE'OO 

SPEC VOL 
IM«*3/KG) 
2.178E-03 
2.178E-03 
1.678E-03 
1.671E-03 
2.178E-03 

SPEC VOL 
1M»»3/KG) 
7.250E-03 
1.817E-02 
2.913E-02 
5.139E-02 
7.222E-02 
1.912E-01 
'i.627E-01 
9.061E-01 
1.006E-02 
1.0tl7E-03 
1.036E-03 
1.011E-03 
1.015E-03 
1.035E-03 
1.076E-03 
1.153E-03 
1.112E-03 
1.2I7E-03 
1.312E-03 
1.312E-03 

SPEC VOL 
IM»«3/K6) 
2.913E-02 
1.12iiE-03 
1.12'iE-03 

SPEC VOL 
(M»»3/KG) 
5.139E-02 
1.271E-03 
1.271E-03 

SPEC VOL 
(M««3/KG) 
1.912E-01 
1.912E-01 

SPEC VOL 
(H»»3/KG) 
1.627E-01 
1.087E-03 
1.087E-03 

SPEC VOL 
(M»«3/KG) 
9.061E-01 
1.039E-03 
1.039E-03 

SPEC VOL 
(H«»3/KG) 
1.006E-a2 
1.006E-02 

ENERGY 
(H) 

1.11SE«08 
1.011E«08 
1.232E+08 
1.232E+08 
1.118E*a8 

ENERGY 
(H) 

3.713E+07 
5.070E«07 
1.361E+07 
3.732E«07 
1.279E*07 
3.397E*07 
2.979E»07 
2.567E*07 
2.236E«07 
1.535E»06 
3.068E*06 
3.091E*06 
3.191E<06 
5.095E*06 
7.790E»06 
1.263E.07 
1.295E»07 
1.595E»07 
1.873E»07 
1.873E.07 

ENERGY 
(U) 

1.816E>06 
2.063E«06 
2.063E»06 

ENERGY 
(HI 

i.iieE^os 
3.212E»06 
3.212E.06 

ENERGY 
(U) 

1 . 8 1 3 E < 0 6 
1 . 8 1 3 E » 0 6 

ENERGY 
(U) 

1 .S68E>06 
2 . 0 8 6 E « 0 6 
2 . 0 8 6 E > 0 6 

ENERGY 
lU) 

1 . 3 5 1 E » 0 6 
1 . 5 3 3 E » 0 6 
1 . 5 3 3 E « 0 6 

ENERGY 
(U) 

O.OOOE'OO 
O.OOOE'OO 

QUALITY 

2.0E-0t 
O.OE+00 

-1.1E-01 
-1.1E-01 
2.0E-01 

QUALITY 

1.0E*00 
2.1E+00 
I.IE^OO 
1.2E+00 
1.1E*00 
1.2E«00 
1.1E*00 
1.0E*00 
9.0E-01 
O.OE+00 
2.8E-02 

-3.2E-01 
-3.1E-01 
-2.'tE-01 
-1.1E-01 
6.5E-10 

-1.2E»00 
-8.7E-01 
-6.1E-01 
-6.1E-01 

QUALITY 

l.lEtOO 
O.OE'OO 
O.OEtOO 

QUALITY 

1.2E>00 
O.OEtOO 
O.OE'OO 

QUALITY 

1.2E»00 
1.2E*00 

QUALITY 

I.IE'OO 
O.0E«00 
O.OE»00 

QUALITY 

1.0E«00 
o.OE«(ia 
O.OE'OO 

QUALITY 

9.0E-01 
9.0E-01 
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FLOW: » I R _ 1 

MODEL 

I N AIR 
CP AIR 
HX.AIR 
CB.1 

FLOW: G A S . I 

MODEL 

CB 1 
HX BOIL 
HX SH 
HX RH 
HX AIR 
HX^ECON 
DRY 1 
SK 1 

PRES. 
(ATM) 

1.000E>00 
1.15I1E»00 
1.138E>0a 
1.138E«00 

PRES. 
(ATH) 

1.138E«00 
1.127E«00 
t.l16E<00 
1.105E'00 
1.091E»00 
1.083E«00 
1.0S3E>00 
l.OOOE'OO 

TEMP. 
(K) 

2.981E*02 
3.U9E«02 
5.000E*02 
5.000E<02 

TEMP. 
IK) 

2.332E»03 
1.665E*03 
t.023E>03 
7.3ME«02 
5.815E>02 
5.788E.02 
7.303E»02 
2.982E.02 

VELOCITY 
IH/S) 

0.0O0E«OO 
O.OOOE'OO 
O.OOOE'OO 
0.000E*0O 

VELOCITY 
IM/S) 

0.000E*OO 
O.OOOE'OO 
O.000E*00 
O.OOOE'OO 
O.OOOE'OO 
O.OOOE'OO 
0.000E«00 
O.OOOE'OO 

ENTH. 
IJ/KG) 

-9.910E100 
1.389E*01 
2.059E*05 
2.059E'05 

ENTH. 
1 J/KG) 

-2.261E>05 
-l . ' i31E»06 
-2.290E*06 
-2.64'iE>06 
-2.818E«06 
-2.S2SE<06 
-2.883E»06 
-3.373E«06 

MASS 
IKG/S) 

I.IOOE'OI 
I.IOOE'01 
I.IOOE'OI 
1.100E-01 

MISS 
(KG/S) 

l .SISE'OI 
1.515E»01 
1.515E»01 
1.515E«01 
1.515E«01 
1.515E»01 
1.583E»01 
1.583E»01 

SPEC VOL 
(M»»3/KG) 
8.168E-01 
7.70iiE-01 
1.217E'0O 
1.217E«00 

SPEC VOL 
IH«»3/K6) 
5.772E«00 
1.109E<00 
2.5<19E>00 
t.819E<0a 
1.186E»00 
1.487E«00 
1.901E«0a 
8.1t7E-01 

ENERGY 
(H) 

-1 .387E«02 
1.915E.05 
2.S83E*06 
2.S83E*06 

ENERGY 
lU) 

-3 .191E-06 
-2 .212E»07 
-3 .539E«07 
-1 .086E»07 
- 1 . 3 5 5 E . 0 7 
- 1 . 3 6 5 E ' 0 7 
-1 .562E*I )7 
-5 .338E«07 

QUALITY 

1.0E«00 
1.0E«00 
I.OE'OO 
I.OE'OO 

QUALITY 

i.OE*oa 
1.0E*00 
1.0E*00 
l.OE'OO 
l.OE'OO 
l.OE'OO 
I.OE'OO 
I.OE'OO 

COMPOSITION OUTPUT BY FLOH 

FLOH: AIR_1 

IN AIR 
CP AIR 
HX AIR 
CB_1 

FLOH: 6AS.1 

CB_1 

HX.BOIL 

HX SH 
HX RH 
HX AIR 
HX ECON 
DRV 1 
SK.1 

N2 = 
H2 = 
H2 = 
N2 = 

CO = 
0 = 
CO = 
OH = 
C02= 
C02= 
C02= 
C02= 
C02= 
C02= 

0.78000 
0.78000 
0.78000 
0.78000 

0.01833 
0.00126 
0.00008 
0.00019 
0.16100 
0.16100 
0.16100 
0.16100 
0.15189 
0.15189 

02 = 
02 = 
02 = 
02 = 

C02= 
OH = 
C02= 
02 = 
H20= 
H20= 
H20= 
H20= 
H20= 
H20= 

0.22000 
0.22000 
0.22000 
0.22000 

0.11056 
0.00581 
0.16091 
0.01673 
0.11879 
0.11879 
0.11879 
0.11879 
0.15227 
0.15227 

H := 0.00081 
02 = 0.02271 
H2 = 0.00002 
S02s 0.00098 
NO = 0.00001 
N2 = 0.70213 
N2 = 0.70213 
N2 = 0.70213 
N2 : 0.67516 
N2 : 0.67516 

H2 = 0.00259 
S02= 0.00097 
H20= 0.11866 

N2 = 0.70213 
02 = 0.01709 
02 = 0.01709 
02 = 0.01709 
02 = 0.01611 
02 = 0.01611 

H20= 0.11133 

NO = 0.00072 

02 = 0.01709 
S02:= 0.00098 
S02= 0.00098 
S02= 0.00098 
S02= 0.00095 
S02= 0.00095 

NO : 0.00512 N2 = 0.69019 

N2 : 0.70170 0 = 0.00001 

S02= 0.00098 
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MODEL 

IN H20 
ST HPl 
S T ' H ? 2 

ST IP 
ST LPl 
ST LP2 
3T.LP3 
EC 1 
PUMP SC 
FUNP FH 
pu;;? BFP 
!N AIR 
CP AIR 
II,,: COAL 
CE 1 
SK_1 

S';3T_1 

NET 
AUXILIARY 
EFFICIENCY 

POWER SUNMARY 

INPUT 
(W) 

1.38SE*03 
O.O0OE»OO 
O.OOOEtOO 

o.caoE*oo 
O.OC0E«OO 
O.O0CE*OO 
O.OOOE'OO 
O.OOCE*00 
O.OO0E*OO 
0.0D0E«0O 
O.OCOE*00 
O.OOOEtOO 
O.OOOEtOO 
1.119E*07 
O.OOOE+00 
O.OOOE*00 

1.119E*07 

1.602E»07 
O.OOOEtOO 
3.862E-01 

PRODUCED 
IH) 

O.OOOEtOO 
2.185E*06 
2.09SE»06 
3.878E*06 
2.517E»06 
2.693Et06 
3.229E*06 
O.OOOE+00 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OCOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

1.663Et07 

CONSUMED 
IH) 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
2.319Et01 
3.220Et05 
7.132Et01 
O.OOOEtOO 
1.916Et05 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

6.111Et05 

LOSS 
IH) 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
2.CS2Et07 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
7.760Et06 

2.858Et07 

SUBSYSTEM: A 
CONVERGENCE OF THE INDEPENDENT VARIABLES, 
POSSIBLY VERY CLOSE TO THE SOLUTION 

OBJECTIVE: 3.12129Et02 
VARIABLES 

1 1.86251Et07 
2 l.S1S18Et02 
3 1.21777E-01 

CONSTRAINTS 
1 -1.85D19Et01 
2 1.57502E-10 
3 6.17113E-10 

HX_BOIL.HEAT 
FUHP_BFP.EXIT PRES 
ST_IP.SR 

IN_H2O.DH=0.0 
IN_H2O.DP=0.0 
DEAR 1.PARM.QUAL=0.0 
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APPENDIX E: OPEN-CYCLE 
MAGNETOHYDRODYNAMIC POWER PLANT 
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PROCESS GP_1:IN 

PROCESS 
GAS_D2-> IN_02 
AIR :-> IN_AIR HX_02 <-GAS_02 CP_AIR HX_AIR:C 
FUEL_1-> INF COAL DRY_1 CS_1 <-AIR 1 ->GAS 1 
E5S l-> NZ 1 MG 1:H DF 1 

SYSBEG A 

PRCCE' 
LIQ 
STH 

STH 
STH 
STM 
STM 
STH 

HPl-
Hr2-
LP1-
LP2-
1-> 

> 
> 
> 
> 

IN_H20 SD_1 ->STM 1 
HX_SH:C ST_HP1 ->STH HPl 
ST_;:P2 ->STM_HP2 
H';_rH:C ST_IP ->STH_IP 
ST_LP1 ->STH_LP1 
ST_LP2 ->STM_LP2 ST_LP3 ->STH_DUM 
EC 1 
FH_HP1:H <-STH_DUM 
FH_HP2;H <-STM_HPl 
FH_LP1:H <-STM_HP2 
FH LP2:H <-STM_LP1 
MXISC <-STM_LP2 
PU.N?_SC HX_EC0N:C FH LP2:C FH LP1:C 
DCAR_1 <-STN_IP 
PU: P FH FH_IIP2:C FH_HP1:C 
NX_FW <-STM_l 
PUMP BFP NG 1:C HX BOIL:C IN_H20:CYCL 

VARY 
CON'3 
VARY 
CONS 
VARY 
CONS 

SYSEND 

HX BOIL.HEAT = » 1E1 2 
IH H;:O.OH = O.O 
FUl;P EFP.EXIT PRES = » 
IN H ; O . D P = 0.0 
ST IP.SR = « 0.01 0.20 
DEAR_1.PARM.0UAL = 0 . 0 

A 

100 200 

PROCESS 
GAS_1-> HX_BOIL:H HX_SH:H HX_RH:H 

HX AIR:H HX_ECON:H DRY 1:H SK 1 
NULL-> SYST 1 » »:OUT 

DATA 
IN 02.PARM .T=298.15; .P=1.0; 

.T=298.15; 

.XO2=0.22; 

.1=0.0; .P=180.0 

.P=1.0; .H=8.0 

ID='GAS'; 
.XO2=1.0; 

IN_AIR.PARH .ID='GAS'; 
.XN2=0.78; 

IN_H20.PARH .ID='H20'; 
.Q=0.20; 

INF_COAL.PARM .HASS=2.5 
.N=0.0079; 
.ASH=0.0371 

SD l.PARM .8UAL=0.20; 
CP_AIR.PARM .EXIT_PRES=6.00; .EFFICIENCY=0.88; 
CB_1.PARM .A£H_DET=0.0; .K_FRAC=0.01; 
HZ_1.PA-M .EFFICIENCY=0.90; .EXIT_VEL=750; 
M3_1.P;nM .B_FIELD=6.0; .DELTA_LEN3TH=1.0; 

.FRICTI0N_C0EF=3E-3; .INVERTER_EFF=0.97; 
STANT0N_N0=2.5E-3; .HALL_TEMP=1800.0; 

M=2.0 

.K=75.0 

.C=0.5213; .H=0.060; 
.3=0.0085; .H20=0.227; 

.HHV=20.713E6; 

.0=0.3152; 

DF_l.PARM 
DRY_1.PARM 
HX_COIL.PARM 
HX_S1I.PARM 
HX RH.PARM 
HX_AIR.PARH 
HX ECON.PARH 
STJIPl.PARM 
ST_HP2.PARH 
ST_IP.PARM 
ST LPl.PARM 
ST~LP2.PARM 

.EXIT_VEL=0.0; 
.H2O_DET=0.05; 
.HEAT=12E6; 
.T_SET(2)=S11.i 
.T_SETI2)=811.; 
.T_SET(2)=S00.; 
.HEAT=1E5; 
.EXIT_FRES=100 
.EXIT_PRES=50. 
.EXIT_PRES=15. 
.EXIT_FRES=5.; 
.EXIT_PRES=1.; 

.PRES_RECOVERY_COEF=0.50; 

.EXIT_PRES=0.85; 
LOAD_FACTOR=0.7; 
PRINT=0; 

.EFFICIENCY=0.81 

.EFF1CIEHCY=0.81 

.EFFICIEIICY=0.86 

.EFFICIENCY=0.87 
•EFFICIENCY=0.87 

.SR=0.10 

.SR=0.10 

.SR=0.07 

.SR=0.05 

.SR=0.05 

http://DEAR_1.PARM.0UAL
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ST_LP3.PARM .EXIT_FPES=0.066; .EFFICIENCY=0.87; .SR=0.0; 
SC_1.PAR;| .EXIT_FRE3=0.066; 

FL::P_SC.PARH .EXIT_FRES=I5.0; .EFFICIENCY=O.90; 

PU;;P_FW.FA-H .EXIT_RRES=L£0.0; .EFFICIENCY=0.90; 

PUR.P B^P.FARM .EXIT_RRES= 190.0; .EFFICIENCY=0.90; 

SYST"I.PARM .PCNER HEAO_PTR=FO;;ER_HEAD_PTR; 
.FLOW fJEAD PTR=FL0H_HEAD_PTR; 

LOOP: A N= 1 F= 3.7510Et07 
X= 1.2O00EtO7 1.9000Et02 7.0000E-02 
C= -6.1270Et03 8.1000E*00 -6.3133E-02 

LOOP: A 
S= 1.5277Et05 9.9000E-01 1.1525Et00 
[•.U= O.DOCCOEtOO 

LCOP: A N= 5 F= 3.1213Et02 
X= 1.0713Et07 1.31S2Et02 1.2178E-01 
C= -1.J5Q5Et01 1.3750E-10 6.1711E-10 
SCALE TERMINATION, ACTUAL= 1.67011E-09 IN LOOP: A 

IN_02 

ID=GAS 
TENP = 
PRES = 
VEL = 
ENTH = 
MASS = 

2.98150Et02 
l.OOOOOEtGO 

O.OOOOOEtCO 
-1.17:51Et01 
2.00000EtOO 

ID=6AS 
TEMP = 
PRES = 
VEL = 
ENTH = 
MASS = 

2.98150Et02 
I.OCOOOEtCO 

O.OOOOOEtCO 
-9.91020EtOO 
8.0000CEtOO 

M3DE = DESIGN 
EXIT PRES = 6.CO0O0EtOO 
EFFICIEI'CY = 8.8eeOOE-01 
M'SS FACTOR = 2.36271E-02 
M F.'XTCR = I.OOOOOEtOO 
F.RESSURE RATIO = 6.00000EtOO 

MODE = DESIGN 
TYPE = COUNTER 
DESIGN NASS FLOH RATES = 11.87 10.00 KG/S 
INLET TEMPERATURES = 975.06 519.76 K 
AVERAGE TEMPERATURES = 877.31 659.88 K 
DESIGN THERMAL RESISTIVITIES = l.OOOOEtOO O.OOOOEtOO O.OOOOEtOO SQ-H K/H 
OVERALL HEAT TRANSFER COEF = I.OOOOOEtOO H/SQ-H K 
LC3 MEAN TENP DIFFERENCE = 2.11617Et02 K 
HEAT TRANSFERRED = 2.97321Et06 H 
HEAT TRANSFER SURFACE AREA = 1.38518Et01 SQ-H 
HEAT FLUX = 2.11617Et02H/SQ-H 
SURFACE TEMPERATURES = 760.11 760.11 K 

INF COAL 
FUEL HHV= 2.07130Et07 
FUEL MASS= 2.50000Et00 
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FUEL HEIGHT FRACTICN'S 
CARBON HYDRCSEN 
0.521300 O.O6G0OO 

OXYGEN 
0.315200 

NITROGEN 
0.007900 

SULFUR 
0.008500 

CHLORINE 
0.000000 

HATER 
0.227000 

ASH 
0.087100 

DRY_1 
FUEL HHV= 2.51927Et07 
FUEL MASS= 2.03121EtOO 
H:D_DET= 5.CQCG0E-02 

H20 REi:OVED= 1.657S9E-01 
HEAT RE5UIRE0= 1.11733Et06 

CB 1 

FUEL HEIGHT FRACTIONS 
CARBON H'lCROGEN 
0.610566 0.073739 

OXYGEN 
0.337371 

NITROGEN 
0.009709 

SULFUR 
0.010116 

CHLORINE 
0.000000 

HATER 
0.050000 

ASH 
0.107011 

FUEL NASS BUR!)ED = 1.81616Et00 
FUEL HHV = 2.85187Et07 
FUEL HEAT OF FORM AS BURNED = -1.38836Et06 
HEAT LOSS FRACTION = O.OOOOOEtOO 
STOICHICI'.ETRY = 1.01379EtOO 
CAR3GN EURNOUT = I.OOOOOEtOO 
ASN MASS REMOVED = 2.17750E-01 
,̂S:i M.'.SS IN FUEL = O.OOOOOEtOO 
W.'TER M.'.SS IN FUEL = 1.01711E-01 
SLURRY CONCENTRATION = 9.11006E-01 
POTASSIUM MASS = 5.76982E-02 
SEED FRACTION = 1.00000E-02 

FUEL ELEMENT FRACTIONS (AS BURNED) 
ARGCN CARBON HYDROGEN POTASSIUM NITROGEN OXYGEN SULFUR CHLORINE 
O.OCOOOO 0.717167 0.03-3311 0.000000 0.010873 0.183539 0.011699 0.000000 

OXIDIZER ELEMENT FRACTIONS 
A^GSN CARBON HYDROGEN 
0.000000 0.000000 o.oooooo 

POTASSIUM NITROGEN 
0.000000 0.605062 

OXYGEN 
0.391938 

SULFUR CHLORINE 
0.000000 0.000000 

ELEMENT FRACTIONS 
ARGON C.'.RECN 
0.000000 0.109755 

HYDROGEN 
0.013591 

POTASSIUM NITROGEN 
0.001859 0.511225 

OXYGEN 
0.106573 

SULFUR 
0.001790 

CHLORINE 
0.000000 

N2 1 

HG 1 

EFFICIENCY = 9.00000E-01 
EXIT VELOCITY = 7.50000Et02 

STANTON NO. = 2.50000E-03 
FRICTICN COEFFICIENT = 3.00000E-03 
EXIT PRESSURE = 8.50OCOE-O1 
HALL TEMPERATURE = 1.80000Et03 
LOAD FACTOR = 7.00000E-01 
FARADAY FIELD = 3.1S00CEt03 
FiRABAY CURRENT = 7.16795Et03 
KALL FIELD = 1.53359E»03 
M'.SNETIC FIELD INTENSITY = 6.00000Et00 
PERCENTAGE HEAT LOSS = 8.27536Et01 
PERCENTAGE PRESSURE LOSS = 6.92281Et00 
MAXIMUM HALL PARAMETER = 7.19928EtOO 
AVERAGE CCNDUCTIVITY = 5.30959EtOO 
INLET MACH NO. = 7.96511E-01 
OUTLET MACH NO. = 8.77318E-01 
PGWER DENSITY = 1.25017Et07 
FLOW RATIO (L/D) = 1.9'h86SEt01 
INLET AREA = 3.06991E-02 
OUTLET AREA = 1.15365E-01 
CHANIIEL LENGTH = 7.00000Et00 



128 

PRESSURE RECOVERY C0E::FICIENT = 5.00000E-01 
EXIT VELOCITY = O.OOOOOEtOO 

IN_H2i 

SD_1 

0 

ID=H20 
TENP = 6.31118Et02 
FPES = 1,S0OO0EtC2 
VEL = O.OOOOOE:00 
ENTH = 1.£9I3:Et06 
i;-,S3 = 7.5CC0OEtO1 

QUALITY = 2.00000E-01 

NODE = DESIGN 
TYPE = COUNTER 
DESIGN MASS FLOW RATES = 11.87 15.00 KG/S 
INLET TEN'ERATURES = 2015.08 631.15 K 
AVERAGE TENFERATURES = 1565.11 721.07 K 
DESIGN THc-N'.L RESISTIVITIES = l.OOOOEtOO O.OOOOEtOO O.OOOOEtOO SQ-H K/H 
OVERALL HEAT TRAr;SFER COEF = I.OOOOOEtOO H/SQ-H K 
LPS ME.».N TEMP CIFFERENCE = 9.196S9Et02 K 
HEAT TRANSrEP''ED = 1.32690Et07 H 
HEAT TRANSFER SURFACE AREA = 1.11277Et01 SQ-H 
H;AT FLUX = 9.196C'?Et02K/SQ-H 
SURFACE TEMPERATURES = 1095.39 1095.39 K 

ST HPl 

MODE = DESIGN 
TURBINE EFFICIENCY = 8.10000E-01 
I'.ZrRAtilCAL EFFICIENCY = 9.75000E-01 
FC'.IER F:"CDUCED = 2.18182EtC6 
FLOW F/\CTOR = 2.355S0E-05 
DESIGN NASS FLOH RATE = 1.50000Et01 
SPLIT RATIO = 1.0COOOE-01 
VOL FLOW RATE = 1.35901E-01 
EXHAUST LOSS = O.OOOOOEtOO 

ST HP2 

MODE = DESIGN 
TU"BINE EFFICIENCY = 8.10000E-01 
MECHANICAL EFFICIEr.'CY = 9.75000E-01 
POWER PRODUCED = 2.09772Et06 
FLOW FACTOR = 3.57563E-05 
DESIGN MASS FLOW RATE = 1.35000Et01 
SPLIT RATIO = 1.C0OO0E-01 
VOL FLOW RATE = 6.93773E-01 
EXflAUST LOSS = O.OOOOOEtOO 

MODE = DESIGN 
TYPE = COUNTER 
DESIGN MASS FLOH RATES = 11.87 12.15 KG/S 
INLET TEMPERATURES = 1315.19 621.86 K 
AVERAGE TEMPERATURES = 1115.12 717.93 K 
DESIGN THERMAL RESISTIVITIES = l.OOOOEtOO O.OOOOE+OO O.OOOOEtOO SQ-H K/H 
OVERALL HEAT TRJr.'SFER COEF = I.OOOOOEtOO H/SQ-M K 
LOS NEAN TEMP DIFFERENCE = 1.22530Et02 K 
HEAT TRANSFERRED = 5.17339Et06 H 
HEAT TRANSFER SURFACE AREA = 1.29551Et01 SQ-M 
HEAT FLUX = 1.22530Et02K/SQ-M 
SURFACE TEHPERATURES = 892.66 892.66 K 
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ST.IP 

MODE = DESIGN 
TU-SINE EFFICIENCY = 8.60C00E-01 
MECHANICAL EFFICIEN'CY = 9.75000E-01 
PC::ER PPCBUCEO = 3.87S20Et06 

FLOW FACTCR = 6.85866E-05 
DESIGN MASS FLOH RATE = 1.21500Et01 
SPLIT RATIO = 1.21777E-01 
VOL FLOW RATE = 2.32236Et00 
EXHAUST LOSS = O.OOOOOEtOO 

ST LPl 

MODE = DESIGN 
TU"BINE EFFICIENCY = 8.7000CE-01 
MEC'VNICAL EFFICIENCY = 9.75000E-01 
rC::? FRCBUCED = 2.517C6Et05 

FLCl FACTOR = 1.77633E-01 
DESIGN ;:',SS FLOW RATE = 1.06310Et01 
SPLIT RATIO = 5.00000E-02 
VOL FLOW PATE = 1.919S3EtC0 
EXHAUST LOSS = O.OOOOOEtOO 

ST_LP2 

MODE = DESIGN 
TURBINE EFFICIENCY = 8.70000E-01 
MECHANICAL EFFICIENCY = 9.75000E-01 
FO'IER FRCDUCED = 2.69830EtC6 
FLO:; FACTOR = 1.535^<0E-01 
DESIGN N;SS FLOH RATE = 1.01023Et01 
SPLIT RATIO = 5.OOCOOE-02 
VOL FLGW RATE = 9.15613Et00 
EXHAUST Less = O.OOOOOEtOO 

ST LP3 

MC5E = DESIGN 
TURBINE EFFICIENCY = 8.70000E-01 
MECHANICAL EFFICIENCY = 9.75000E-01 
PGWER FRCDUCED = 3.22SS7Et06 
FLCN F,̂ CTCR = 1.S2963E-03 
DESIGN MASS FLOW RATE = 9.59715Et00 
SPLIT RATIO = O.OOOOOEtOO 
VOL FLOW RATE = 9.657S2E-02 
EXHAUST LOSS = O.OOOOOEtOO 

SC 1 

FH HPl 

EXIT PR 

1 

HEAT= 2 
SUBCOOL 
Â -EA: 1 
TTC= 2. 
DCTO= 6 
HDP= 1. 
CDP = 
AREAS= 
HEATS= 
US 
LNTDS= 
HTEMP= 
CTEMP= 

ESSURE = 6.60000E-02 

.78318Et06 
= 5.55000EtOO 
.91133Et01 
76!67Et01 
.05282Et01 
OCOOOE-02 
3.00000E-03 
1.13913Et01 
6.C3551Et05 
1.32132Et02 
9.7813CEt01 
7.19632Et02 
5.56675Et02 

3.OOOOOE-03 
5.02755EtOO 
2.121S6Et06 
7.17251Et03 
5.89255Et01 
6.01506Et02 
5.1S577Et02 

3.OOOOOE-03 
1.18192E-01 
5.00691Et01 
1.90172Et03 
6.29126Et01 
5.81362Et02 
5.19003Et02 

5.78812Et02 
5.18281E*02 
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FH HP2 

HEAT= 2.99619Et06 
SU!:COOL= 5.55CCOEtOO 
AREA= 2.3I::;E*OI 

TTD= 1.S?i:.9:Et01 
DCTD= 5.76532Et01 
HC?= 1.00:iOOE-02 
CDP = 3.0COOOE-03 
AREAS= 1.1~-95Et01 
HE'>.TS= 2.9966BEt05 
US = 3.035S2Et02 
LNTDS= 6.5:513Et01 
HTEMF= e.Z'-iZCZZtOZ 
CTEM?= 5.132S1Et02 

3.00000E-03 
8.13S51Et00 
2.6150^EtC6 
6.37322Et03 
1.86121Et01 
5.51321Et02 
5.13970Et02 

3.OOOOOE-03 
6.67796E-01 
7.S7£80EtO1 
1.97282Et03 
5.5S039Et01 
5.37253Et02 
1.75215Et02 

5.31703Et02 
1.71019Et02 

FH_LP1 

HEAT= 2.69119Et06 
SU;COOL= 5.55300EtOO 
A=EA= 2.23350Et01 
TTB= 1.'3333Et0l 
CCTD= 5.61551Et01 
HDP= 1.00000E-02 
CDP = 3.COC00E-O3 
AREAS= 9.5i550EtOO 
HEATS= 8.50713Et01 
US = 1.1Ct51EtC2 
LNTDS= 6.36161Et01 
HTENP= 5.17169Et02 
CTEHP= 1.103O9EtO2 

3.OOOOOE-03 
1.33195Et01 
2.52352EtC6 
1.13152Et03 
1.5913',Et01 
1.12722Et02 
1.08833Et02 

3.OOOOOE-03 
8.21130E-01 
8.C3979Et01 
1.67761Et03 
5.81916Et01 
1.25117Et02 
3.61510Et02 

1.19567Et02 
3.63112Et02 

FH_LP2 

HEAT= 1.90369Et06 
SU:COOL= 5.55000EtOO 
AFEA= 2.33097Et01 
TTD= 9.75205E+00 
DCTD= 3.7921CEt01 
HDP= 1.00030E-02 
CDP = 3.0300CE-03 
AREAS= O.OCOGOEtOO 
HEATS= O.OCOGOEtOO 
US = 3.1GOO0EtO2 
LNTDS= O.OOOOOEtOO 
HTEM?= 3.72:51Et02 
CTEMP= 3.63112Et02 

3.OOOOOE-03 
2.35097Et01 
1.81283Et06 
3.15'pS1Et03 
2.2033ZEt01 
3.72S61Et02 
3.63112Et02 

3.OOOOOE-03 
1.11857EtOO 
9.08;3SEt01 
1.60700Et03 
3.98555Et01 
3.72S61Et02 
3.31007Et02 

3.67311Et02 
3.29393Et02 

EXIT PRESSURE = I.SOOOOEtOI 
EFFICIENCY = 9.00000E-01 

MODE = DESIGN 
TYPE = COUNTER 
DESIGN NASS FLOW RATES = 11.87 13.18 KG/S 
It:LET TEHPERATURES = 779.56 327.61 K 
AVERAGE TEMPERATURES = 776.18 328.50 K 
DESIGN THERMAL RESISTIVITIES = l.OOOOEtOO O.OOOOEtOO 
OVERALL HEAT TRANSFER COEF = I.OOOOOEtOO H/SQ-H K 
LOG MEAN TEMP DIFFERENCE = 1.17676Et02 K 
HEAT TRANSFERRED = I.OOOOOEtOS H 
HEAT TRANSFER SURFACE AREA = 2.23376Et02 SQ-H 
HEAT FLUX = 1.17676Et02W'SQ-H 
SURFACE TEMPERATURES = 331.89 331.89 K 

O.OOOOEtOO SQ-H K/H 

DEAR 1 
QUAL= 6.1711E-10 
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PUMP FH 

EXIT PRESSURE = 1.80000Et02 
EFFICIENCY = 9.0000CE-01 

PUMP BFP 

EXIT PRESSURE = 1.81818Et02 
EFFICIENCY = 9.000;OE-01 

HX.BOIL 

MCDE = DESIGN 
TYPE = COUNTER 
DESIGN MACS FLOH RATES = 11.87 75.00 KG/S 
INLET TEMPERATURES = 2312.85 631.98 K 
AVER.'XF TEHFERATL'RcS = 2178.97 631.56 K 
DESIGN' THEPN.'.L RESISTIVITIES = l.OOOOEtOO O.OOOOEtOO O.OOOOEtOO SQ-H K/H 
OVERALL KEAT TRANSFER COEF = I.OOOOOEtOO H/SQ-M K 
LCG MEAN TEMP DIFFERENCE = 1.51157Et03 K 
HEAT TRANSFERRED = 1.07128Et07 H 
HEAT TRANSFER SURFACE AREA = 6.91930Et03 SQ-M 
HEAT FLUX = 1.51157Et03W/SQ-H 
SURFACE TEMPERATURES = 801.28 801.28 K 

SK 1 
ENERGY REJECTED = 9.52601Et06 H 
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OUTPUT BY FLOH 

FLOH: GAS_02 

HODEL 

IN 02 
HX_02 

FLOH: AIR_1 

HODEL 

IN AIR 
HX 02 
CP AIR 
HX AIR 
CB_1 

FLOH: GAS_1 

HODEL 

CB 1 
NZ 1 
HG 1 
DF 1 
HX BOIL 
HX SH 
HX RH 
HX AIR 
HX ECON 
DRV 1 
SK_T 

FLOH: LIQ_1 

MODEL 

IH H20 
SO 1 
MX FH 
PUMP BFP 
HG 1 
HX_BOIL 

FLOH: STM.1 

HODEL 

SO 1 
HX SH 
ST HPl 
ST HP2 
HX RH 
ST IP 
ST LPl 
ST LP2 
ST LPS 
SC_1 
MX SC 
PUHP SC 
HX ECON 
FH LP2 
FH LPl 
DEAR 1 
PUHP FH 
fH HP2 
FH HPl 
HX.FH 

FLOH: STM_HP1 

HODEL 

ST HPl 
FH HPl 
FH_HP2 

FLOU: STH_HP2 

MODEL 

ST HP2 
FH HP2 
FH LPl 

PRES. 
(ATH) 

I.OOOEtOO 
I.OOOEtOO 

PRES. 
(ATH) 

I.OOOEtOO 
I.OOOEtOO 
6.000E<00 
5.910E»00 
5.910EtOO 

PRES. 
I ATH) 

5.910E100 
1.029Et00 
6.521E-01 
8.292E-01 
8.209E-01 
S.127E-01 
8.016E-01 
7.966E-01 
7.S86E-01 
7.S86E-01 
I.OOOEtOO 

PRES. 
(ATM) 

1.800Et02 
1.800E102 
1.768Et02 
l.S18Et02 
1.818E.02 
1.800Et02 

PRES. 
UTM) 

1.800Et02 
1.782Et02 
1.000Et02 
5.000Et01 
1.950Et01 
1.500E»01 
S.OOOEtOO 
I.OOOEtOO 
6.600E-02 
6.600E-02 
6.600E-02 
1.500Et01 
1.185Et01 
1.176Et01 
1.163EtO) 
1.163Et01 
1.800Et02 
1.781E102 
1.768Et02 
1.768Et02 

PRES. 
I4THI 

1.000EtO2 
9.900Et01 
9.900Et01 

PRES. 
lATH) 

5.000Et01 
1.950Et01 
1.950Et01 

TEHP. 
IK) 

2.981E102 
2.9StE<02 

TEHP. 
IKI 

2.981Et02 
2.981Et02 
5.198E102 
S.OO0E.02 
8.000Et02 

TEHP. 
IK) 

2.826Et03 
2.735Et03 
2.256Et03 
2.313Et03 
2.015E«03 
1.3l5Et03 
9.751Et02 
7.796Et02 
7.72SEt02 
9.330Et02 
2.9S2Et02 

TEMP. 
IKI 

6.311Et02 
6.31lEt02 
6.212Et02 
6.217Et02 
6.320Et02 
6.311Et02 

TEMP. 
(K) 

6.311Et02 
8.110Et02 
7.202EtO2 
6.219Et02 
8.110E102 
6.150E102 
5.176Et02 
3.731Et02 
3.1l3Et02 
3.l13Et02 
3.1l3Et02 
3.276Et02 
3.29<iEt02 
3.631Et02 
1.103Et02 
1.709Et02 
1.710Et02 
5.183Et02 
5.567Et02 
5.567Et02 

TEHP. 
(KI 

7.202Et02 
5.78aEt02 
5.788Et02 

TEMP. 

(K) 
6.219Et02 
5.317Et02 
5.317Et02 

VELOCITY 
(H/S) 

O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
(M/SI 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
IM/S) 

O.OOOEtOO 
7.500Et02 
7.500Et02 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
IH/SI 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
IH/S) 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
(H/S) 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
(H/S) 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

ENTH. 
(J/KG) 

-1.173E101 
-l.173Et0l 

ENTH. 
(J/KG) 

-9.910EtOO 
-1.027Et01 
2.230Et05 
5.201Et05 
5.201Et05 

ENTH. 
(J/KGI 

-2.331E105 
-5.113Et05 
-2.011Et06 
-1.730EtO6 
-2.632Et06 
-3.719Et06 
-1.210Et06 
-1.161Et06 
-1.'i69Et06 
-1.562Et06 
-5.331Et06 

ENTH. 
(J/KG) 
l.891Et06 
1.710Et06 
1.612Et06 
1.613Et06 
1.718Et06 
1.891E106 

ENTH. 
(J/KGI 

2.195Et06 
3.380EtO6 
3.231Et06 
3.071Et06 
3.522Et06 
3.191Et06 
2.919Et06 
2.675Et06 
2.330Et06 
1.599Et05 
2.275Et05 
2.293Et05 
2.367Et05 
3.779Et05 
5.777E<05 
8.122Et05 
8.636Et05 
1.063Et06 
1.219Et06 
1.219Et06 

ENTH. 
(J/KG) 

3.231Et06 
1.375Et06 
1.375Et06 

ENTH. 
(J/KG) 

3.071Et06 
1.127Et06 
1.127Et06 

HASS 
(KG/S) 

2.000EtOO 
2.000EtOO 

MASS 
(KG/S) 

B.OOOEtOO 
l.OOOEtO! 
I.OOOEtOI 
LOOOEtOl 
I.OOOEtOI 

Mass 
1KG/S) 
1.l87Et01 
l.187EtOl 
1.187Et01 
1.l87Et01 
1.187Et01 
1.187Et0t 
1.187Et01 
1.187Et01 
1.187Et01 
1.231Et01 
l.231Et01 

HASS 
(KG/S) 

7.500Et01 
6.000Et01 
7.500Et01 
7.500Et01 
7.500Et01 
7.500Et01 

MASS 
1KG/S1 
l.SOOEtOl 
l.SOOEtOI 
1.350Et01 
1.215Et01 
1.215Et01 
1.063Et01 
l.OlOEtO! 
9.597Et00 
9.597Et00 
9.597Et00 
1.318Et01 
l.SMEtOl 
1.318Et01 
1.318Et01 
1.318Et01 
1.500EtOl 
1.500Et01 
l.SOOEtOl 
l.SOOEtOl 
1.500Et01 

MASS 
(KG/SI 
l.SOOEtOO 
l.SOOEtOO 
l.SOOEtOO 

HASS 
(KG/SI 
1.350EtOO 
2.850EtOO 
2.850EtOO 

SPEC VOL 
(M"»3/KG1 
7.616E-01 
7.616E-01 

SPEC VOL 
IHt»3/K61 
8.168E-01 
S.SOIE-Ol 
2.113E-01 
3.751E-01 
3.751E-01 

SPEC VOL 
IM"3/KGI 
1.369Et00 
1.939Et00 
9.213EtOO 
7.816Et00 
6.612EtOO 
1.351Et00 
3.261Et00 
2.633EtOO 
2.637Et00 
3.267EtOO 
8.232E-01 

SPEC VOL 
IH.»3/K6I 
2.178E-03 
2.178E-03 
1.678E-03 
1.671E-03 
1.869E-03 
2.178E-03 

SPEC VOL 
IM»»3/KG1 
7.250E-03 
1.817E-02 
2.913E-02 
5.139E-02 
7.222E-02 
1.912E-01 
1.627E-01 
9.061E-01 
1.006E-02 
1.OO7E-03 
1.036E-03 
1.011E-03 
1.015E-03 
1.035E-03 
1.076E-03 
1.153E-03 
1.112E-03 
1.217E-03 
1.312E-03 
1.312E-03 

SPEC VOL 
I H.»3/KG1 
2.913E-02 
1.121E-03 
1.121E-03 

SPEC VOL 
(H.»3/K6I 
5.139E-02 
1.271E-03 
1.271E-03 

ENERGY 
lUI 

-2.315Et01 
-2.315Et01 

ENERGY 
(HI 

-7.928Et01 
-1.027Et02 
2.230Et06 
5.201Et06 
5.201Et06 

ENERGY 
(Ul 

-2.76SEt06 
-2.76SEt06 
-2.051Et07 
-2.051EtO7 
-3.125Et07 
-1.'i52Et07 
-1.999Et07 
-5.297Et07 
-5.307Et07 
-5.629Et07 
-6.582Et07 

ENERGY 
(Ul 

l.118Et08 
1.01'iEt08 
1.232Et08 
1.232Et08 
l.311Et08 
1.118Et0S 

ENERGY 
(Ul 

3.713Et07 
5.070Et07 
1.361Et07 
3.732Et07 
1.279Et07 
3.397Et07 
2.979Et07 
2.567Et07 
2.236Et07 
1.535Et06 
3.068EtO6 
3.091Et06 
3.191Et06 
5.095EtO6 
7.790Et06 
1.263Et07 
1.295Et07 
1.595Et07 
1.873Et07 
1.873Et07 

ENERGY 
(HI 

1.816Et06 
2.063EtO6 
2.063EtO6 

ENERGY 
(HI 

1.116Et06 
3.212Et06 
3.212Et06 

QUALITY 

l.OEtOO 
LOEtOO 

QUALITY 

l.OEtOO 
l.OEiOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 

QUSLITY 

l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 

QUALITY 

2.0E-01 
O.OEtOO 
-1.1E-01 
-1.1E-01 
2.7E-01 
2.0E-01 

QUALITY 

l.OEtOO 
2.1EtOO 
l.lEtOO 
1.2EtOO 
l.lEtOO 
1.2EtOO 
l.lEtOO 
l.OEtOO 
9.0E-01 
O.OEtOO 
2.8E-02 
-3.2E-01 
-3.1E-01 
-2.1E-01 
-1.1E-01 
6.5E-10 
-1.2EtOO 
-8.7E-01 
-6.1E-01 
-6.1E-01 

QUALITY 

l.lEtOO 
O.OEtOO 
O.OEtOO 

QUALITY 

1.2EtOO 
O.OEtOO 
O.OEtOO 



MODEL 

ST I P 
DEAR.l 

FLOH: STH.LPI 

HODEL 

ST LP l 
FH LPl 
FH.LP2 

FLOU: STH.LP2 

MODEL 

ST LP2 
FH LP2 
MX_SC 

FLOH: STH_OU« 

HODEL 

ST LP3 
FH_HP1 

PRES. 
(ATH) 

l.SOOEtOI 
l.SOOEtOI 

PRES. 
(ATH) 

S.OOOEtOO 
1.950EtOO 
1.950EtOO 

PRES. 
(ATM) 

I.OOOEtOO 
9.900E-01 
9.900E-01 

PRES. 
(ATH) 

i .600E-02 
6.600E-02 

TEMP. 
IK) 

t.lSOEtOZ 
6.150Et02 

TEHP. 
(K) 

5.176Et02 
1.196Et02 
1.196Et02 

TEHP. 
(K) 

3.731Et02 
3.673Et02 
3.673Et02 

TEHP. 
(K) 

3.113Et02 
3.113Et02 

VELOCITY 
(H/S) 

O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
(H/Sl 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
(H/SI 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
(M/S) 

O.OOOEtOO 
O.OOOEtOO 

EHTH. 
(J/KGI 

3.191Et06 
3.191Et06 

ENTH. 
(J/KGI 

2.919Et06 
6.168Et05 
6.16SEtOS 

ENTH. 
(J/KG) 

2.675Et06 
3.915Et05 
3.915Et05 

EHTH. 
(J/KG) 

2.330Et06 
2.330Et06 

HASS 
(KG/S) 

1.516EtOO 
1.516EtOO 

MASS 
(KG/S) 

5.317E-01 
3.3S2EtOO 
3.382EtOO 

MASS 
(KG/S) 

5.051E-01 
3.887EtOO 
3.887EtOO 

MASS 
(KG/S) 

O.OOOEtOO 
O.OOOEtOO 

SPEC VOL 
(M»»3/KG) 
1.912E-01 
1.912E-01 

SPEC VOL 
(H»»3/KGI 
1.627E-01 
1.087E-03 
1.087E-03 

SPEC VOL 
(H»«3/KGI 
9.061E-01 
1.039E-03 
1.039E-03 

SPEC VOL 
(H««3/KGI 
1.006E-02 
1.006E-02 

ENERGY 
(Ul 

1.813Et06 
1.813Et06 

ENERGY 
(Ul 

l.S68Et06 
2.0S6Et06 
2.086EtO6 

ENERGY 
(Ul 

1.351Et06 
1.533Et06 
1.533Et06 

ENERGY 
(Ul 

O.OOOEtOO 
O.OOOEtOO 

QUALITY 

1.2EtOO 
t.2EtOO 

QUALITY 

l.lEtOO 
O.OEtOO 
O.OEtOO 

QUALITY 

l.OEtOO 
O.OEtOO 
O.OEtOO 

QUALITY 

9.0E-01 
9.0E-01 

COMPOSITION OUTPUT BY FLOU 

FLOH: 6AS.02 

IN 02 
nx_02 

FLOH: AIR_1 

IH AIR 
HX 02 
CP AIR 
HX AIR 
CSJ 

FLOH: 6AS.1 

CB.1 

H2.1 

MG.1 

DF.1 

NX.eOIL 

H!(.SH 

HX RH 
HX AIR 
HX ECON 
DRY 1 
SK.1 

ce = 
02 = 

H2 = 
H2 = 
H2 = 
N2 = 
N2 = 

CO = 
HO = 
CO = 
NO = 
CO = 
HO = 
CO = 
NO = 
CO = 
NO = 
C02= 
S02= 
C02= 
C02= 
C02= 
C02= 
C02= 

1.00000 
1.00000 

0.78000 
0.63636 
0.63636 
0.63636 
0.63636 

0.08619 
0.01339 
0.07815 
0.01115 
0.02921 
0.00316 
0.03868 
0.00159 
0.00790 
0.00126 
0.26596 
0.00162 
0.26596 
0.26596 
0.26596 
0.21910 
0.21910 

02 = 
02 = 
02 = 
02 = 
02 = 

C02= 
N2 = 
C02= 
N2 = 
C02= 
N2 = 
C02= 
N2 = 
C02= 
N2 = 
H20= 

H20= 
H20= 
H2a: 
H20= 
H20: 

0.22000 
0.36361 
0.36361 
0.36363 
0.36363 

0.16230 
0.19018 
0.17212 
0.19170 
0.23126 
0.51817 
0.21999 
0.51130 
0.25653 
0.52751 
0.19111 

0.19112 
0.19112 
0.19112 
0.211SS 
0.21158 

H = 
0 = 
H = 
0 = 
H : 
0 = 
H : 
0 = 
H = 
0 = 
KOH= 

KOH= 
KOH= 
KOH= 
KOH= 
KOH= 

0.00612 
0.00729 
0.00513 
0.00598 
0.00095 
0.00093 
0.00152 
0.00155 
0.00011 
0.00011 
0.00361 

0.00362 
0.00362 
0.00362 
0.00339 
0.00339 

H2 = 
OH = 
H2 = 
OH = 
H2 = 
OH = 
H2 = 
OH = 
H2 = 
OH = 
NO = 

N2 = 
N2 = 
N2 = 
N2 = 
N2 = 

0.01211 
0.02269 
0.01099 
0.01981 
0.00131 
0.00601 
0.00560 
0.00826 
0.00129 
0.00167 
0.00005 

0.53116 
0.53117 
0.53117 
0.19809 
0.19809 

H20= 
02 = 
H20= 
02 = 
H20= 
02 = 
H20= 
02 = 
H20= 
02 = 
N2 = 

02 = 
02 = 
02 = 
02 = 
02 = 

0.15620 
0.03828 
0.16058 
0.03580 
0.18310 
0.01681 
0.17917 
0.02091 
0.19150 
0.00690 
0.53111 

0.00321 
0.00321 
0.00321 
0.00301 
0.00301 

K = 0.00176 
S02= 0.00152 
K = 0.00179 
S02= 0.00153 
K = 0.00160 
S02= 0.00159 
K = 0.00171 
S02= 0.00158 
K = 0.00073 
S02= 0.00162 
OH = 0.00001 

S02= 0.00162 
S02= 0.00162 
S02= 0.00162 
S02= 0.00152 
S02= 0.00152 

KOH= 

KOH= 

KOH= 

KOH= 

KOH= 

02 = 

0. 

0. 

0 

0 

0 

0 

• 

.00162 

.00161 

.00195 

.00178 

.00287 

.00319 
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MODEL 

IN_02 
IMPAIR 
CP_AIR 
I;:F_CCAL 
CB_1 
• • . 3 _ 1 

IN_H20 
ST_HP1 
ST HP2 
ST_IP 
ST_LP1 
ST_LP2 
ST_LP3 
SC_1 
pu;;p_EC 
FU;:P_FH 
PUNP_BFP 
SK_1 

SYST.I 

NET 
AUXILIARY 
EFFICIENCY 

INPUT 
(U) 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
5.13;Et07 
O.OOOEtOO 
O.OOOEtOO 
1.333Et03 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.COCEtCO 
O.OO'.iEtOO 
O.CCOEtCO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

5.1S5Et07 

2.355Et07 
O.OOOEtOO 
1.511E-01 

PRODUCED 
IH) 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.COOEtOO 
O.OOOEtOO 
9.561Et06 
O.OOOEtOO 
2.135Et06 
2.0?SEt06 
3.S78Et06 
2.517Et06 
2.693Et06 
3.229Et06 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.COOEtOO 
O.OCOEtOO 

2.620Et07 

CONSUMED 
(HI 

O.OOOEtOO 
O.OOOEtOO 
2.231Et06 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.COOEtOO 
0.003EtCO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
2.319Et01 
3.220Et05 
7.132Et01 
O.OOOEtOO 

2.617Et06 

LOSS 
(HI 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.COOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
2.052Et07 
O.OCOEtOO 
O.OOOEtOO 
O.OOOEtOO 
9.526Et06 

3.035Et07 

SUBSYSTEM: A 
CCNVERGENCE OF THE INDEPENDENT VARIABLES, 
POSSIBLY VERY CLOSE TO THE SOLUTION 

OBJECTIVE: 3.12131Et02 
VARIABLES 

1 1.07128Et07 
2 1.S13l:.Et02 
3 1.2t777E-01 

CONSTRAINTS 
1 -l.S5019Et01 
2 1.875C2E-10 
3 6.171-;3E-10 

HX.BOIL.HEAT 
FUM?_BFP.EXIT_PRES 
ST.IP.SR 

IN_H2O.DH=0.0 
IN_H2O.DP=0.0 
DEAR_1.PARH.(3UAL=0.0 
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APPENDIX F: SOLID-OXIDE 
FUEL-CELL SYSTEM 
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PROCESS 
GP_0:IN 

PLI 6ASFR2='1'B; 
PROCESS 

STM_HIX-> IN.MSTM CP STM 
GAS_AM-> IN.GAS CP_GAS HX 1:C MX STH <-STH HIX HX A:C 
AIR_l-> IN.AIR CP_AIR1 HT INTER CP AIR2 HX C:C " 

PLI 6ASFRZ='0'B; 
PROCESS 

GAS_AN-> AIR_1-> SOFC.I 
GAS_AN-> M.X_BURN <-AIR_1 SP BURN ->AIR 1 

PLI GASFRZ='1'B; 
PROCESS 

AIR.1-> HX C:H 
GAS_AN-> HX A:H HX AIR <-AIR_1 

FRCCESS 
GAS_AN-> HX_FB:H GT 1 HX_ST:H SK_1 

SYSBEG A 
VARY IN STH.PARM.H = » 1.0 10.0 
VARY PUMP.SC.EXIT PRES = » 110 170 
CONS IN_STH.DH=0.0 
CCNS IH_STM.DP=0.0 
PROCESS 

STM 1-> IN_STH HX_1:H ST_1 ->STH_DUH 
SC 1 PUMP SC HX_ST:C HX_FB:C IN STH:CYCL 

SYSEND A 
PLI SOFC_I.POWER.PRODUCED = 0.96»SOFC_1.POWER.PRODUCED; 

IN_6AS. POWER. INPUT = IN_6AS. PARM. H»55.529 E6; 
PROCESS 

NULL-> SYST_1 )(_*:OUT 

DATA 
IN.GAS.PARM .1=298.0; .P=1.0; .H=1.0; 
.COMP.XCH1=1.000; 

IN.STH.PARM .ID='H20'; .1=823.0; .P=150.0; 
.M=5.0; .COMP.XH2O=1.0; 

IN_HSTH.PARM .ID='H20'; .T=298.15; .P=1.0; 
.H=1.60; .COMP.XH20=1.0; 

IN_AIR.PARM .T=298.0; .P=1.0; .H=30.0i 
.COHP.XO2=0.21; .COHP.XN2=0.79; 

HX l.PARM .T_SET(2)=573.0; 
HX_A.PARH .T_SETI2)=1073.0; 
HX.C.PARH .T_SETI2)=1073.0; 
HX_FB.PARH .T_SET(1)=800.0; 
HX.ST.PARH .T SET(11=100.0; 
CP_AIR1.PARH .EXIT_PRES=3.5; .EFFICIENCY=0.85i 
CP_AIR2.PARM .EXIT_PRES=12.0; .EFFICIENCY=0.85; 
HT_INTER.PARM .T_SET=318.0; 
CP.GAS.PARH .EXIT_PRES=13.0; 
CP STH.PARM .EXIT_PRES=12.0; 
S0FC_1.CELL_CURRENT=1.56863E5; 
S0FC_1.DELTA_VOLT=0.180; 
SOFC^I.NO_OF_CELLS=230; 
SOFC 1.CELL_TENP=1273.0; 
SDFC_1.CELL_VOLTAGE=0; 
SP_BURN.PARM.SPLIT_RATIO=0.7; 
ST_1.PARM.EXIT_PRES=0.180; 
ST_1.PARM.EFFICIENCY=0.82; 
SC 1.PARM.EXIT_PRES=0.180; 
GT_1.PARH.EFFICIENCY=0.87; 
GT_1.PARH.EXIT_PRES=1.0; 
PUHP.SC.PARH .EXIT_PRES=150.0; 
SYST l.PARM .POHER_HEAD_PTR=POHER HEAD PTR; 

.FLOW HEAD PTR=FLOW_HEAD_PTR; 

.EFFICIENCY=0.85; 

.EFFICIENCY=0.85; 
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LOOP: A N= 1 F= 2.2759EtlO 
X= 5.0000EtOO 1.5000Et02 
C= -1.50S5Et05 -2.9850EtOO 

LOOP: A 
S= 6.069SEt05 9.8010E-01 
MU= O.OOOOOEtOO 

LOOP: A N= 1 F= 6.1692Et07 
X= 1.7520Et00 1.5305Et02 
C= 7.8511Et03 1.1125E-10 
SCALE TERMINATION, ACTUAL= 1.67118E-01 IN LOOP: 

IN_MSTH 

ID=H20 
TEI:P = 
PRES = 
VEL = 
ENTH = 
MASS = 

2 . 9 8 1 5 0 E t 0 2 
I.OOOOOEtOO 

O.OOOOOEtOO 
1 . 0 1 9 7 6 E t 0 5 
1.60000EtOO 

MODE = DESIGN 
EXIT PRES = 1.20O00EtO1 
EFFICIENCY = 8.50000E-01 
MASS FACTOR = 1.59130E-01 
H FACTOR = I.OOOOOEtOO 
PRESSURE RATIO = 1.20000Et01 

ID=GAS 
TEMP = 2.980O0EtO2 
PRES = I.OOOOOEtOO 
VEL = O.OOOOOEtOO 
ENTH = -1.66751Et06 
MASS = I.OOOOOEtOO 

MODE = DESIGN 
EXIT PRES = 1.30000Et01 
EFFICIEN'CY = 8.50000E-01 
MASS FACTOR = 3.8781SE-03 
M FACTOR = I.OOOOOEtOO 
PRESSURE RATIO = 1.30000Et01 

MODE = DESIGN 
TYPE = COUNTER 
DESIGN MASS FLOH RATES = 1.75 1.00 KG/S 
INLET TEMPERATURES = 823.00 536.91 K 
AVERAGE TEMPERATURES = 818.13 551.97 K 
DESIGN THERMAL RESISTIVITIES = l.OOOOEtOO O.OOOOE+OO O.OOOOEtOO SQ-M K/H 
OVEP.-.LL HEAT TRANSFER COEF = I.OOOOOEtOO H/SQ-H K 
LOS MEAN TEMP DIFFERENCE = 2.63132Et02 K 
HEAT TRANSFERRED = 1.11323Et05 H 
HEAT TRANSFER SURFACE AREA = 1.22586Et02 SQ-H 
HEAT FLUX = 2.63132Et02H/SQ-H 
SURFACE TEMPERATURES = 559.57 559.57 K 
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MODE = DESIGN 
TYPE = COUNTER 
DESIGN M : S FLOW RATES = 9.78 2.60 KG/S 
IfiLET TENRERATURES = 1637.80 132.71 K 
AVERAGE TEMPERATURES = 1170.80 752.87 K 
DESIGN THERMAL RESISTIVITIES = l.OOOOEtOO O.OOOOEtOO 0 OOOOEtOO SQ-H K/H 
OVERALL HEAT TRANSFER COEF = I.OOOOOEtOO K/SQ-H K U.UUUUEtOO SQ H K/H 
LC3 M.EAN TEMP DIFFERENCE = 7.0690SEt02 K 
HEAT TRANSFERRED = 1.55331Et06 H 
HEAT TRANSFER SURFACE AREA = 6.11786Et03 SQ-H 
HEAT FLUX = 7.C69C3Et02W/SQ-H 
SU.RFACE TEMPERATURES = 930.89 930.89 K 

IN_AIR 

IO=GAS 
TEMP = 2.9S000Et02 
PRES = I.CCOOOEtOO 
VEL = O.OOOOOEtOO 
ENTH = -1.61551Et02 
MASS = 3.00000Et01 

CP_AIR1 

MODE = DESIGN 
EXIT PRES = 3.50000EtOO 
EFFICIENCY = 8.50000E-01 
HASS FACTOR = 8.67661E-02 
M FACTOR = I.OOOOOEtOO 
PRESSURE RATIO = 3.50000EtOO 

HT_INTER 

HEAT = -3.95116Et06 

CP AIR2 

NODE = DESIGN 
EXIT PRES = 1.20000Et01 
EFFICIENCY = 8.50000E-01 
NASS FACTCR = 2.560S7E-02 
H FACTOR = I.OOOOOEtOO 
PRESSURE RATIO = 3.12857E+00 

MODE = DESIGN 
TYPE = COUNTER 
DESIGN MASS FLOH RATES = 22.82 30.00 KG/S 
INLET TENFERATURES = 1637.80 173.81 K 
AVERAGE TEMPERATURES = 1321.17 773.12 K 
DESIGN THERMAL RESISTIVITIES = l.OOOOEtOO O.OOOOEtOO O.OOOOE+OO SQ-H K/H 
OVERALL HEAT TRANSFER COEF = I.OOOOOEtOO W/SQ-H K 
LOG MEAN TEHP DIFFERENCE = 5.47569Et02 K 
HEAT TRANSFERRED = 1.97118Et07 W 
HEAT TRANSFER SURFACE AREA = 3.60591Et01 SQ-H 
HEAT FLUX = 5.17569Et02W/SQ-H 
SURFACE TEHPERATURES = 1090.23 1090.23 K 
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SOFC 1 

CELL TEMPERATURE = 1.27300Et03 K 
CELL CURRENT = 1.56863Et05 A 
CELL VOLTAGE = 0.67761 V 
NO OF CELLS = 230 
STACK VOLTAGE = 1.55857Et02 V 
OVERALL ISOTHERMAL HEAT OF REACTION = 1.77208Et07 H 
STACK GROSS POWER = 2.317C3Et07 H 
NERNST POTENTIAL AT FUEL CELL EXIT = 8.50113E-01 V 

FUEL UTILIZATION = 7.19S53E-01 
OXYGEN UTILIZATION = 1.2S155E-01 

SPLIT RATIO = 7.00000E-01 
POWER REQUIRED = O.OOOOOEtOO 

MODE = DESIGN 
TYPE = COUNTER 
DESIGN M.VSS FLOW RATES = 32.60 1.75 KG/S 
INLET TEMPERATURES = 1095.93 171.10 K 
AVERAGE TEMPERATURES = 917.96 618.19 K 
DESIGN THERIN,L RESISTIVITIES = l.OOOOEtOO O.OOOOEtOO O.OOOOEtOO SQ-H K/H 
OVERALL KEAT TRANSFER COEF = I.OOOOOEtOO H/SQ-M K 
LOG MEAN TEMP DIFFERENCE = 3.31701Et02 K 
HEAT TRANSFERRED = 1.23773Et07 H 
HEAT TRANSFER SURFACE AREA = 3.73113Et01 SQ-M 
HEAT FLUX = 3.3170'*Ct02H/SQ-H 
SURFACE TEMPERATURES = 761.22 761.22 K 

6T_1 

SK 1 

MODE = DESIGN 
EXIT PRESSURE = I.OOOOOEtOO 
EFFICIENCY = 8.7C0C0E-01 
MECfi'.NICAL EFFICIENCY = 9.80000E-01 
H.ASS FACTOR = 1.36216E-02 
H FACTOR = I.OOOOOEtOO 
DESIGN PRESSURE RATIO = 1.16136Et01 
PRESSURE RATIO = 1.16136Et01 

MODE = DESIGN 
TYPE = COUNTER 
DESIGN MASS FLOH PATES = 32.60 1.75 KG/S 
INLET TENFERATURES = 175.57 332.32 K 
AVERAGE TEHPERATURES = 137.78 101.71 K 
DESIGN THERMAL RESISTIVITIES = l.OOOOEtOO O.OOOOEtOO O.OOOOEtOO SQ-H K/H 
OVERALL HEAT TRANSFER COEF = I.OOOOOEtOO H/SQ-M K 
LOS MEAN TENP DIFFERENCE = 3.13512Et01 K 
HEAT TRANSFERRED = 2.79726Et06 W 
HEAT TRANSFER SURFACE AREA = 8.92233Et01 SQ-M 
HEAT FLUX = 3.13512EtO IH/SQ-H 
SURFACE TEHPERATURES = 111.22 111.22 K 

ENERGY REJECTED = 3.70975Et06 H 
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ST 1 

ID=H20 
TEMP = 
PRES = 
VEL = 
ENTH = 
MASS = 

8.230OOEtO2 
1.50000Et02 

O.OOOOOEtOO 
3.1'i609Et05 
1.75203EtOO 

MODE = DESIGN 
TURBINE EFFICIE.NCY = 8.20000E-01 
MECHANICAL EFFICIENCY = 9.75000E-01 
PCNER FRCDUCED = 1.93119Et06 
FLOW FACTOR = 9.00566E-O6 
DESIGN f;ASS FLOW RATE = 1.75203EtOO 
SPLIT RATIO = O.OOOOOEtOO 
VOL FLO:; RATE = 1.59711E-02 
EXHAUST LOSS = O.OOOOOEtOO 

SC_1 

EXIT PRESSURE 1.80000E-01 

EXIT PRESSURE = 1.53016Et02 
EFFICIENCY = 9.00000E-01 
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FLOH: STM.MIX 

MODEL 

IH MSTH 
CP STM 
HX.STH 

FLOH: GAS.AH 

HODEL 

IN GAS 
CP GAS 
HX 1 
HX STH 
HX A 
SOFC 1 
HX BiJRN 
SP BURH 
HX A 
MX AIR 
HX FB 
GT 1 
HX ST 
SK_1 

FLOH: AIR.l 

MODEL 

IN AIR 
CP AIRl 
HT INTER 
CP AIR2 
HX C 
SOFC 1 
MX BURN 
SP BURN 
HX C 
MX.AIR 

FLOU: STM.l 

MODEL 

IN STH 
HX 1 
ST.1 
SC 1 
PUMP SC 
HX ST 
HX.FB 

FLOH: STH.DUH 

MODEL 

ST.1 

PRES. 
(ATM) 

I.OOOEtOO 
1.200Et01 
1.200Et01 

PRES. 
(ATM) 

I.OOOEtOO 
1.300Et01 
1.287Et01 
1.200Et01 
1.188Et01 
1.18SEtOt 
1.188Et01 
l.ieSEtOl 
1.176Et01 
1.l76Et0l 
1.161Et01 
I.OOOEtOO 
9.900E-01 
I.OOOEtOO 

PRES. 
(STH) 

I.OOOEtOO 
3.500Et00 
3.500EtD0 
1.200Et01 
1.188Et01 
1.188E101 
1.188Et01 
l.lSSEtOl 
1.176Et01 
1.176Et01 

PRES. 
(ATM! 

1.5O0EtO2 
1.185Et02 
1.800E-01 
1.800E-01 
1.530E102 
1.515Et02 
1.500Et02 

PRES. 
(ATH) 

1.800E-01 

TEMP. 
IK) 

2.981Et02 
2.982Et02 
2.982Et02 

TEHP. 
(KI 

2.9S0Et02 
5.369Et02 
5.730Et02 
1.327Et02 
1.073Et03 
1.286Et03 
1.638Et03 
1.638Et03 
1.301EtO3 
1.096Et03 
8.000EtO2 
1.756Et02 
1.000Et02 
2.982Et02 

TEMP. 
(KI 

2.980Et02 
1.171Et02 
3.1S0Et02 
1.738Et02 
1.073E103 
1.2a6Et03 
1.286Et03 
1.638Et03 
1.005Et03 
1.005Et03 

TEHP. 
(KI 

8.230EtO2 
8.139Et02 
3.312Et02 
3.312Et02 
3.323Et02 
1.711Et02 
8.259Et02 

TEMP. 
(KI 

3.312Et02 

OUTPUT BY 1 

VELOCITY 
IM/S) 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
IM/S) 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
IH/S) 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

VELOCITY 
(H/S) 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

VELKITY 
IH/S) 

O.OOOEtOO 

FLOH 

EHTH. 
IJ/KG) 
1.050Et05 
1.063EtO5 
1.063Et05 

EHTH. 
IJ/KG) 

-1.668Et06 
-1.016Et06 
-3.935Et06 
-9.773Et06 
-8.020Et06 
-8.902Et06 
-6.191Et05 
-6.191EtO.S 
-1.085Et06 
-t.365Et06 
-1.711Et06 
-2.131Et06 
-2.217Et06 
-2.330Et06 

ENTH. 
(J/KG) 

-l.616Et02 
1.519Et05 
2.007Et01 
1.791Et05 
8.373Et05 
1.095Et06 
1.095Et06 

-6.191Et05 
-1.181Et06 
-1.181Et06 

ENTH. 
1 J/KG1 

3.116Et06 
3.123Et06 
2.358Et06 
2.132Et05 
2.607Et05 
8.193Et05 
3.151Et06 

ENTH. 
1 J/KG1 

2.358Et06 

HASS 
1 KG/SI 
1.600EtOO 
1.600EtOO 
1.600EtOO 

HASS 
1KG/S1 
I.OOOEtOO 
I.OOOEtOO 
I.OOOEtOO 
2.600EtOO 
2.600EtOO 
5.591EtOO 
3.260Et01 
9.780EtOO 
9.780EtOO 
3.260Et01 
3.260Et01 
3.26DEt01 
3.260Et01 
3.260Et01 

MASS 
IKG/S) 

3.D00EtO1 
3.000Et01 
3.000Et01 
3.000Et01 
3.000Et01 
2.701Et01 
2.701Et01 
2.282Et01 
2.282Et01 
2.282Et01 

MASS 
IKG/S) 

1.752EtOO 
1.752EtOO 
1.752EtOO 
1.752Et00 
1.752EtOO 
1.752Et00 
1.752Et00 

MASS 
IKG/S) 

O.OOOEtOO 

SPEC VOL 
(M»»3/KG) 
1.003E-03 
1.002E-03 
1.002E-03 

SPEC VOL 
(M»»3/KGI 
1.521EtOO 
2.113E-01 
2.277E-01 
1.720E-01 
1.308E-01 
1.380E-01 
1.133E-01 
1.133E-01 
3.323E-01 
2.791E-01 
2.060E-01 
1.126EtOO 
l.21lEtOO 
8.939E-01 

SPEC VOL 
(M"»3/KG) 
8.176E-01 
3.636E-01 
2.581E-01 
1.123E-01 
2.569E-01 
3.111E-01 
3.111E-01 
1.133E-01 
2.561E-01 
2.561E-01 

SPEC VOL 
(M»«3/KGI 
2.259E-02 
2.217E-02 
9.675E-03 
1.016E-03 
l.OlOE-03 
1.110E-03 
2.270E-02 

SPEC VOL 
(M»»3/K6I 

9.675E-03 

EHERGV 
(Ul 

1.680EtOS 
1.701Et05 
1.701E105 

ENERGY 
(H) 

-1.668Et06 
-1.016EtO6 
-3.935Et06 
-2.511Et07 
-2.0a5Et07 
-1.977Et07 
-2.018Et07 
-6.055Et06 
-1.061Et07 
-1.119Et07 
-5.686Et07 
-6.9'i6Ei07 
-7.226Et07 
-7.597Et07 

ENERGY 
(U) 

-1.817Et03 
1.556Et06 
6.021Et05 
5.373Et06 
2.512Et07 
2.959Et07 
2.959Et07 
-1.413Et07 
-3.387Et07 
-3.387Et07 

ENERGY 
(Ul 

1.638Et07 
1.626Et07 
1.121Et07 
1.156Et06 
1.239Et06 
1.036Et06 
1.611Et07 

ENERGY 
(Ul 

O.OOOEtOO 

QUALITY 

-1.1E-01 
-3.5E-01 
-3.5E-01 

QUALITY 

l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 

QUALITY 

l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 

QUALITY 

1.9EtOO 
1.8EtOO 
9.0E-01 
O.OEtOO 
-l.lEtOO 
-7.9E-01 
1.9EtOO 

QUALITY 

9.0E-01 

COMPOSITION OUTPUT BY FLOU 

FLOH: GAS.AH 

IN GAS 
CP GAS 
HX 1 
HX'STM 
HX A 
SOFC 1 
HX BURN 
SP BURH 
HX A 
MX AIR 
HX'FB 
GT 1 
HX ST 
SK.1 

CH1= 
CH1= 
CH1= 
CH1= 
CH1= 
CO = 
C02= 
C02= 
C02= 
C02= 
C02= 
C02= 
C02= 
C02= 

1.00000 
1.00000 
1.00000 
0.11210 
0.11210 
0.06832 
0.05233 
0.05233 
0.05233 
0.05233 
0.05233 
0.05233 
0.05233 
0.05233 

H20: 0.58760 
H20= 0.58760 
C02= 0.15768 
H20= 0.17915 
H20= 0.17915 
H20= 0.17915 
H20= 0.17915 
H20= 0.17915 
H20= 0.17915 
H20= 0.17915 
H20= 0.17915 

H2 = 
NO = 
NO = 
HO = 
NO = 
NO = 
NO = 
NO = 
NO = 

0.15781 
0.00139 
0.00139 
0.00139 
0.00139 
0.00139 
0.00139 
0.00139 
0.00139 

H20= 0.61619 
N2 = 0.68902 
N2 = 0.68902 
N2 = 0.68902 
N2 = 0.68902 
N2 = 0.68902 
N2 = 0.68902 
N2 = 0.68902 
N2 = 0.68902 

OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 

= 0.00016 
= 0.00016 
= 0.00016 
= 0.00016 
= 0.00016 
= 0.00016 
= 0.00016 
= 0.00016 

02 = 
02 = 
02 = 
02 = 
02 = 
02 = 
02 = 
02 = 

0.07791 
0.07791 
0.07791 
0.07791 
0.07791 
0.07791 
0.07791 
0.07791 
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FLOU: AIR.l 

IN AIR 
CP 
HT 
CP 
HX 

AIRl 
INTER 
AIR2 
C 

SOFC 1 
HX 
SP 
HX 
MX 

BURN 
BURN 
C 
AIR 

N2 
N2 
N2 
N2 
H2 

C02= 
C02= 
C02= 

0.79000 
0.79000 
0.79000 
0.79000 
0.79000 
0.00033 
0.00033 
0.05233 
0.05233 
0.05233 

02 = 0.21000 
02 = 0.21000 
02 = 0.21000 
02 = 0.21000 
02 = 0.21000 
N2 = 0.86787 
H2 = 0.86787 
H20= 0.17915 
H20= 0.17915 
H20= 0.17915 

02 = 0.1J180 
02 = 0.13180 
NO = 0.00139 
NO = 0.00139 
NO = 0.00139 

N2 = 0.68902 
N2 = 0.68902 
N2 = 0.68902 

0.00016 
0.00016 
0.00016 

02 = 0.07791 
02 = 0.07791 
02 = 0.07791 

IN MSTH 
CP'STH 
IN GAS 
CP GAS 
IN AIR 
CP.AIRl 
HT INTER 
CP AIR2 
SOFC 1 
ST 1 
SK.1 
IH STH 
ST 1 
SC 1 
PUHP.SC 

SYST.I 

NET 
AUXILIARY 
EFFICIENCY 

POUER SUMMARY 

INPUT 
(HI 

O.OOOEtOO 
O.OOOEtOO 
5.553Et07 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

-3.732Et01 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

PRODUCED 
(Ul 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
2.317Et07 
1.235Et07 
O.OOOEtOO 
O.OOOEtOO 
1.931Et06 
O.OOOEtOO 
O.OOOEtOO 

CONSUMED 
(Ul 

O.OOOEtOO 
2.103Et03 
O.OOOEtOO 
6.215Et05 
O.OOOEtOO 
1.561Et06 
O.OOOEtOO 
1.771Et06 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
8.310Et01 

LOSS 
(Ul 

O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
3.951Et06 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 
3.710EtO6 
O.OOOEtOO 
O.OOOEtOO 
1.005Et07 
O.OOOEtOO 

5.519Et07 1.075Et07 1.001Et07 1.772Et07 

3.071Et07 
O.OOOEtOO 
5.531E-01 

SUBSYSTEM: A 
CONVERGENCE OF THE INDEPENDENT VARIABLES, 
POSSIBLY VERY CLOSE TO THE SOLUTION 

OBJECTIVE: 6 .16921Et07 
VARIABLES 

1 1.75203EtOO IN.STM.PARH.M 
2 1.53016Et02 PUHP SC.EXIT PRES 

CONSTRAINTS 
1 7.85115Et03 IN STH.OH=0.0 
2 1.11217E-10 IN STH.OP=0.0 
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APPENDIX G: LIQUID-METAL 
MAGNETOHYDRODYNAMIC POWER PLANT 
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PROCESS 
SYSBEG A 
FROGESS 

"̂ fcS 1-> 

LI3 l-> 
GAS 1-> 
LIQ 1-> 
GA3_1-> 

GP_1:IN 

IN GAS 
IN_LIQ 
LI0_1-> HHHD 1 TPNZ 1 SEPR 1 -X 
i:OIF 1 HT LIQ MNOZ"l 
HX_REG:H HT COOL CP GAS HX REG:C 
TPMX 1 <-LIQ 1 

>GAS_CO ->LIQ CO 

IN_GAS:CYCL 
LI0_1-> IN_LIQ:CYCL 
t;ULL-> SYST_1 
VARY MMND_1.EXIT_PRES = • 8 18 CONS HHHD 1.VOID_FRACT10N<0 85 
VARY IN^Lia.H = » 1.0 150 CONS TPHX_1.VOID_FRACTION>0 55 
ViRY TFNZ_1.EXIT_PRES = • 3 17 CONS TPMX.I.PRES DIFF IN=0 0 
VARY HT_LIQ.HEAT = » 1E2 5E6 CONS IN_LIQ.DT=0.0~ 
VARY CP_G.\S.EXIT_PRES= * 10 60 CONS IN_GAS.DP=0.0 
VARY HT_CCOL.HEAT = » -1E6 0.0 CONS HT COOL.FLC.TEHP=310 0 
VARY HX_REG.HEAT = * 2E1 1E6 
CCNS HX_PEG.FLC.TEMP<SEFR 1.FLCl.TEHP-20.0 
HINT -SYST_1.EFFICIEN'CY 
E'.IITCH ACC=1E-1 DEL=lE-6 HAXIT=100 

S". 3E."3 A 
F''3CE3S 
NULL-> •_»:OUT 

DATA 
IN.GAS.PARH .10='JAN-HE' 
IN_LIQ.PARN .ID='LIQ-MA' 
i;;;:;3_1.PARM .EFFICIENCY=0.80; 
TPNZ_1.PARM .EFFICIENCY=0.90; 
SEIR.I.PARM .VELOCITY_HEAD_RATIO=0.90; 
HX_REG.FARM .HEAT=1E5; 
HT.CGCL.PARM .HEAT=-6.5E5; 
HT.LIQ.PARH .HEAT=1.0E6; 
CP.G'.S.PARN .EFFICIENCY=0.88; .EXIT_PRES=50.0; 
COIF.I.PARM .EXIT_VELOCITY=15.0; .EFFICIENCY=0.90; 
MNOZ l.PARM .EXIT_VELOCITY=25.0; .EFFICIENCY=0.90; 
TFMxIl.PARM .PRES_DROP=0.0; 
SYST l.PARM .F01IER_HEAD_PTR=P0WER HEAD_PTR; 

.FLOW HEAD PTR=FLOW HEAD_PTR; 

.T=867; .P=50.0; .V=25.0; 

.1=867; .P=50.0; .V=25.0; 
0; .EXIT PRES=21.00; 
0; .EXIT PRES=20.0; 

.M=1.0; 

.M=90.0 



:0P: a N= 1 NEQ= 1 F= l . 1 7 0 1 E t 0 1 
X= 2 . 1 0 0 0 E t C 1 9 . 0 0 0 0 E . 0 1 2 . 0 0 0 0 E t 0 1 
C= 6.320CEtOO 8 . 5 0 0 5 E t 0 0 -6.757' iEtOO 
LAGRANGE MULTIPLIERS: 

6 . 2 3 2 9 E . 0 1 - 2 . 0 3 9 « E - 0 1 7 . 6 8 3 2 E t 0 1 
O.OOOOEtOO O.OOOOEtOO O.OOOOEtOO 
O.OOOOEtOO 

OISPLftCEMEIlTS= 
1 .8296E.00 
2.1259E-n 

HEIGHT : 

1.0000Et06 
1.0l25Et02 

2.1107E101 
O.OOOOEtOO 
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5.0000Et01 -6.5000Et05 1.0000Et05 

•1.8709E-02 2.3818E-01 -2.5712Et02 

1.5123Et03 

O.OOOOEtOO 

O.OOOOEtOO 

O.OOOOEtOO 

«.1<i62CtOO 

O.OOOOEtOO 
O.OOOOEtOO 

O.OOOOEtOO 

O.OOOOEtOO 

O.OOOOEtOO 

O.OOOOEtOO 

O.OOOOEtOO 

8.0331Et00 

-1.5423E-09 
2.587tE-01 

•«.3201E-12 

3.6621Et05 5.0505E-01 -2.6806Et05 I.S223Et06 -6.Z32SE-11 1.1102E-15 -7.6833E-11 

INITIAL INFEASIBLITY NORH= 2.2712Et05 FINAL INFEASIBLITY NORM= 2.0612E-17 

LOOP: A N= 16 NEQ= 1 F= - 2 . 8 ' i 9 9 E - 0 1 
2 . 5 8 3 0 E . 0 1 9 . 8 0 3 3 E t 0 1 

C= 7 . 1 6 3 0 E - 0 1 6 . 9 n 3 E - 0 1 
L= 1 . C 6 5 ; E . 0 2 

LAGRAIIGE MULTIPLIERS: 

1.8769E 
O.OOOOE.QO 
O.OOOOEtOO 

DISPLACEMENTS: 
1 .1 ' i72E-01 

- 3 . 2 0 1 1 E - 1 3 
HEIGHT : 

- 2 . M 1 6 E - 0 3 
O.OOOOE.OO 

- 6 . 9 5 8 1 E - 0 1 
-4.716^-13 

2.0259EI0I 
7.0920E-01 

2.8131E<00 
O.OOOOEtOO 

1 .3662Et06 
•7.833U-02 

3.2O06E-O1 
O.OOOOEtOO 

5 . 0 5 0 5 E t 0 1 
3 . 3 9 3 5 E - 0 1 

1 .1379Et02 
O.OOOOEtOO 

'9 .1S06Et05 
1 .5890E-01 

O.OOOOEtOO 
O.OOOOEtOO 

1 .9223Et06 
7 . 1 5 9 3 E - 0 1 

1 . 7 1 5 6 E - 0 1 
O.OOOOEtOO 

O.OOOOEtOO 
O.OOOOEtOO 

O.OOOOEtOO 
O.OOOOEtOO 

O.OOOOEtOO 
O.OOOOEtOO 

2 . 1 5 3 1 E - 0 3 - 8 . 8 2 6 5 E t 0 1 - 3 . 2 7 4 6 E - 1 0 - 3 . 7 9 8 7 E t 0 3 - 1 . 5 9 0 0 £ t 0 3 - 1 . S 7 6 8 E - 1 2 2 . 5 2 5 S E - 1 5 - 2 . 8 1 3 1 E - 1 2 

O.OOOOEtOO 
O.OOOOEtOO 

I N I T I A L INFEASIBLITY NORH= 2.0127EtOO FINAL INFEASIBLITY NORH= 1 .1761E-23 

LOOP: A N= 2 1 NE<3= 1 F= - 2 . 7 8 9 8 E - 0 1 
X= 2 . 5 9 « E t 0 1 9 . 7 3 3 7 E t 0 1 2 . 0 2 6 t E t O 1 1 .2780Et06 5 . 0 5 0 5 E t 0 1 - 9 . 2 1 8 6 E t 0 5 1 .9177Et06 
C= - 3 . 1 1 2 2 E - 0 3 -< . .55S1E-03 3 . 3 7 8 5 E - 0 5 - 1 . 8 6 3 9 E - 0 4 - 1 . 1 5 3 6 E - 0 6 1 .9711E-01 2 . 5 1 1 5 E - 0 4 
L= 1 .3376E-02 
LAGRANGE MULTIPLIERS: 

6 .6S87E-03 <i.89S3E-06 2 . 5 1 5 0 E - 0 2 2 . ' i 1 9 2 E - 0 3 3 . 5 3 8 8 E - 0 1 O.OOOOEtOO 1 .7267E-03 O.OOOOEtOO O.OOOOEtOO 
O.OOOOEtOO O.OOOOEtOO O.OOOOEtOO O.OOOOEtOO O.OOOOEtOO O.OOOOEtOO O.OOOOEtOO O.OOOOEtOO O.OOOOEtOO 
O.OOOOEtOO 

DISPLACEMENTS: 
- 3 . 6 2 6 9 E - 0 1 1 . 5 1 6 2 E - 0 3 9 . 1 9 2 1 E - 0 5 6 . H 7 5 E t 0 2 - 2 . 5 1 8 5 E - 1 1 1.9S18EtO0 5.2515EtOO - 6 . 6 8 9 0 E - 1 5 - 1 . 1 2 7 6 E - 1 7 - 2 . 5 1 1 9 E - 1 1 
- 2 . 1 1 9 3 E - 1 5 - 3 . 5 3 S 8 E - 1 3 

HEIGHT = 1 .0000E.12 
I N I T I A L INFEASIBLITY NORM: 3 . 2 6 6 0 E - 0 5 FINAL INFEASIBLITY NORH= 1 .2593E-25 

LOOP: A N: 32 NEQ: 4 F= - 2 . 7 9 0 0 E - 0 1 
X= 2 . 5 9 4 4 E t 0 1 9 . 7 3 « E t 0 1 2 . 0 2 6 l E t 0 1 1 .2786Ei06 5 . 0 5 0 5 E t 0 1 - 9 . 2 1 8 5 E t 0 5 1 .9177Et06 
C= - 1 . 2 9 5 9 E - 0 7 - 2 . 0 7 1 2 E - 0 7 1 .2836E-09 - 2 . 1 6 7 3 E - 0 8 - 9 . 9 8 8 0 E - 1 1 1 .9713E-01 1 .0736E-08 
L: 2 . 2 6 8 8 E - 0 5 

IN_GAS 

ID=JAN-HE 

TEMP = 8.67000Et02 
PRES : S.OOOOOEtOI 
VEL : 2.5O0OOEtO1 
ENTH : 6.05465Et06 
MASS : I.OOOOOEtOO 

ID=LIQ-HA 
TEMP = 8.67000EtO2 

PRES : 5.00000Et01 
VEL = 2.50001^E»01 
ENTH = 1.220,5Et05 
MASS : 9 .7311£Et01 

EFf ic iency = 8 .00000E-01 
Pc^er = 1.17165Et06 
VOID FRAC. : 8 .50000E-01 
LENGTH : S.OCOOJEtOO 
6P,\V ANGLE : 9 .00000Et01 

E H i c i e n c y : 9 .00000E-01 
VOID FRAC = 8.7S581E-01 
SLIP RATIO: I.OOOOOEtOO 
TEMP DIFF: O.OOOOOEtOO 
LENGTH = S.OOOOOEtOO 
GRAV ANGLE : 9 .00000Ei01 
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SEPR.I 
VEL HEAD RATIO= 9.00000E-01 
PRES DROPIll= O.OCCCOEtOO 
FPES CR0?I21= O.OOOOOEtOO 
EFFICIENCY= 8.90813E-01 
VAPOR C/0= O.OOOOOEtOO 
HEAT REJECTED= O.OOOOOEtOO 
LIGUID C/0= O.OOOOOEtOO 
GAS C/0= O.OOOOOEtOO 

MDIF.1 
Efficiency = 9.00000E-01 
LENGTH = 5.00000EtOO 
GRAV ANGLE = 9.00000Et01 

HT.LIQ 

HEAT = 1.27853Et05 

MN0Z_1 
EFFICIENCY = 9.00000E-01 
EXIT VELOCITY= 2.50000Et01 
LEflGTH = S.OOOOOEtOO 
GRAV ANGLE = 9.C0O0OEtO1 

HX_REG 

HCDE = DESIGN 
TYPE = COUNTER 
DESIGN )'ASS FLOH RATES = 1.00 1.00 KG/S 
INLET TEMPERATURES = 856.15 167.10 K 
AVERAGE TENFERATURES = 671.93 651.93 K 
DESIGN THERMAL RESISTIVITIES = l.OOOOEtOO O.OOOOEtOO O.OOOOEtOO SQ-H K/H 
OVERALL HEAT TR7N3FER COEF = I.OOOOOEtOO H/SQ-H K 
LOG MEAN TEMP DIFFERENCE = 2.00000Et01 K 
HEAT TRANSFERRED = 1.91771Et06 H 
HEAT TRANSFER SURFACE AREA = 9.58870Et01 SQ-M 
HEAT FLUX = 2.00000EtOIW/SQ-H 
SURFACE TEMPERATURES = 836.15 836.15 K 

HT.COOL 

HEAT = 

CP GAS 

-9.21851Et05 

MODE = DESIGN 
EXIT PRES = 5.05051Et01 
EFFICIENCY = 8.80000E-01 
MASS FACTOR = 3.91953E-01 
M FACTOR = I.OOOOOEtOO 
PRESSURE RATIO = 2.51787EtOO 

TPMX 1 
" void frac. = 7.17128E-01 
SLIP RATIO = I.OOOOOEtOO 
TEMP DIFF = O.OOOOOEtOO 
PRES DROP = O.OOOOOEtOO 
DP FRAC = O.OOOOOEtOO 



ISO 

OUTPUT BY FLOH 

FLOU: GAS.l 

MODEL 

IN GAS 
MHHO 1 
TFNZ 1 
SEPR"I 
HX REG 
HT COOL 
CP GAS 
HX REG 
TPHX.l 

FLOH: LIQ.I 

HODEL 

IN LIQ 
HHKD 1 
TPNZ 1 
SEPR"I 
MDIF 1 
HT LIQ 
MNOZ 1 
TPHX.l 

FLOH: GAS_CO 

HODEL 

SEPR.I 

FLOH: LIQ.CO 

HODEL 

SEPR.I 

PRES. 
lATHI 

5.000E<01 
2.591Et01 
2.026EtO1 
2.026E101 
2.006E.01 
2.006Et01 
5.051EtO) 
5.000Et01 
S.OOOEtOl 

PRES. 
lATHI 

S.OOOEtOl 
2.591Et01 
2.026Et01 
2.026Et01 
5.178Et01 
5.178Et01 
S.OOOEtOl 
S.OOOEtOl 

PRES. 
lATHI 

2.026Et01 

PRES. 
lATHI 

2.026Et01 

TEHP. 
(KI 

8.670Et02 
8.S9SEt02 
8.561Et02 
8.565E102 
1.871Et02 
3.100Et02 
1.671Et02 
8.365Et02 
8.670Et02 

TEHP. 
(KI 

8.670Et02 
8.595Et02 
8.S61Et02 
8.S67Et02 
8.578Et02 
8.683Et02 
8.6S3Et02 
8.670Et02 

TEHP. 
(KI 

8.565Et02 

TEMP. 
(KI 

8.567Et02 

VELOCITY 
IM/S) 

2.500EtO1 
2.500Et01 
9.978Et01 
9.166Et01 
9.166Et01 
9.166Et01 
9.166Et01 
9.166Et01 
2.500Et01 

VELOCITY 
(M/S) 

2.500Et01 
2.500Et01 
9.978Et01 
9.166Et01 
1.500EtO) 
l.SOOEtOI 
2.5O0EtO1 
2.500Et01 

VELOCITY 
(M/SI 

9.166Et01 

VELOCITY 
IM/SI 

9.166Et01 

ENTH. 
(J/KG1 

6.0S5Et06 
6.016Et06 
5.999Et06 
6.000Et06 
1.082EtO6 
3.160Et06 
3.978Et06 
5.896Et06 
6.0SSEt06 

ENTH. 
(J/KGI 

1.220Et06 
1.209Et06 
1.201Et06 
1.20SEtO6 
1.209Et06 
1.222Et06 
1.222Et06 
1.220Et06 

ENTH. 
(J/KG 1 

6.000Et06 

ENTH. 
(J/KG) 

1.205Et06 

HASS 
(KG/S) 

I.OOOEtOO 
I.OOOEtOO 
I.OOOEtOO 
I.OOOEtOO 
I.OOOEtOO 
I.OOOEtOO 
I.OOOEtOO 
I.OOOEtOO 
I.OOOEtOO 

MASS 
(KG/S) 

9.731Et01 
9.731Et01 
9.731Et01 
9.731Et01 
9.731Et01 
9.731Et01 
9.731Et01 
9.731Et01 

HASS 
(KG/S) 

O.OOOEtOO 

HASS 
(KG/S) 

O.OOOEtOO 

SPEC VOL 
(M»»3/KGI 
3.557E-01 
6.796E-01 
8.670E-01 
8.671E-01 
1.985E-01 
3.170E-01 
1.898E-01 
3.132E-01 
3.557E-01 

SPEC VOL 
(H»»3/KG) 
1.235E-03 
1.232E-03 
1.231E-03 
1.231E-03 
1.231E-03 
1.235E-03 
1.23SE-03 
1.235E-03 

SPEC VOL 
(H»»3/K6) 
8.671E-01 

SPEC VOL 
(H»*3/KG) 
1.231E-03 

ENERGY 
(H) 

6.055Et06 
6.016EtO6 
6.001Et06 
6.001Et06 
1.087EtO6 
3.l65Et06 
3.983Et06 
5.900Et06 
6.05SEt06 

ENERGY 
(HI 

1.188Et08 
1.177Et08 
t.l77Et08 
1.177Et08 
1.177Et08 
1.190Et08 
1.190Et08 
1.188Et08 

ENERGY 
(HI 

O.OOOEtOO 

ENERGY 
IH) 

O.OOOEtOO 

QUALITY 

l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 
l.OEtOO 

QUALITY 

O.OEtOO 
O.OEtOO 
O.OEtOO 
O.OEtOO 
O.OEtOO 
O.OEtOO 
O.OEtOO 
O.OEtOO 

QUALITY 

l.OEtOO 

QUALITY 

O.OEtOO 

HODEL 

IN GAS 
IN LIQ 
HIiiiO 1 
SETK 1 
HT Liq 
HT COOL 
CP.GAS 

SYST.l 

NET 
AUXILIARY 
EFFICIENCY 

SUCSYSTEM: A 

PO'rIER SUMMARY 

INPUT 
(H) 

-5.S98E-02 
2.535E-02 
0.003E.OO 
O.OOOEtOO 
1.275E.06 
O.OOCE'OO 
O.COOEtOO 

1.279Et06 

3.567Et05 
O.OOOEtOO 
2.790E-01 

NORMAL TERMINATION 

OBJECTIVE: -2.79003E-01 
VARIACL! 
1 
2 
3 
1 
5 
6 
7 

2 
9 
2 
1 
5 
-9 
1 

ES 
.59439E' 
.73113E' 
.02615E' 
.2;C55E-
.03C51E' 
.2i:5<.E' 
.91771E' 

CONSTRAINTS 
1 
2 
1 
2 
3 
1 
3 

-9 
1 

-1 
-2 
1 
-2 
1 

.Sc-SOIE-

.97'i2£E-

.2553'JE 

.071I6E' 

.283S5E 

. 1673'iE' 

.07357E' 

,01 MHHO 1. 
,01 IN LIQ. 
,01 TPNZ 1. 
,05 HT UQ. 
,01 CP GAS, 

FPODUCED 
(Ul 

O.OOOEtOO 
O.OOOEtOO 
1.175Et06 
O.OOOE'OO 
O.OOOEtOO 
O.OOOEtOO 
O.OOOEtOO 

1.175Et06 

EXIT PRES 
M 
EXIT PRES 
HEAT 
EXIT PRES 

,05 HT'CCOL.HEAT 

,06 H>;.REG. 

•11 HIKD 1. 
-01 TPMX 1, 
-07 TFIK"! 
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